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._ Problems from the sciences that are mJe.cted into mathematics texts- (to sei've as
veh1cles for the'deVelpplﬁeni of theory({)r as examples fpr the use of theory) often ex—
hibit the mgathematical * SClenceS as. short-order menus and applied mathématlcs as the
correspondmg cook-books sought to counter this in the SMSG 12th grade text

4

Cg{l Iu§ In ad(ﬁtlon to explmtinipapphcatlons to motivate the development of the sub-

ject and to illustrate some of its 3pecjal consequences, E.G. Begle (Director of SMSG),

A A, Blank (Chalrman-of ‘the’ Calculus team), and I decided that it would be of interest * ‘.

«_ to attempt & systematjic davelopment of appl}catlons As -part of this program,
prepared one chdpter (9: Growth, Decay and Cofhpetition) to,show how essentlally one ,

«-.  general method of the calculps is used in many different sciences, and another ( 15¢

L]

A ]

Georsletrlcal«)pucs and Wavesf to show how different methdds of the calculus have .

furthered the development of essentially one field of selence. T
- . fb ¢

In the present volume I have modified these two chapters to make them mdepend-
pt of the original text, so that they may serve as a math—sgience supplement to other
programs As such, the pres_ent mater1al forms part of the series started by Volumes
X and XI of the SMSG Studles in Mathematlcs volumes based on the lectures for hlgh
school mathemaﬁlcs teachers g1ven by Max M. Schiffer (Applied Mathiématics in the )

High School, Volume X) and by George Polya (Mathemat1cal-Methods in g cience, Vol-.

‘ume XI), In an attempt to provide, s1m11a‘r motivation for the aud1ence addre.ssed by '

[}

. Sch1ffer and by Polya, this volume begms with an introduction suggestmg the ificlusion
. of math- sc1ence material at the secondary level; much of tbis appeared in the Calculus*
"(1 -3¢ The Scope “of Calcuius or in the Teachers Commentary), and in both books it
helps, prepare the reader ,ﬁLr subsequent material, . \ .
Although this volume consists largely of personal contributions to thd Caléulus,* -
I am very much aware of the stxmulus ani help that I recemed~from my colleagues,
particularly from “A.A. Blank (the "Al" of Chapter 2), and frorA F.L. Elder, M. S.
Klamkin, C. W, 'Leeds I, M. A. anton, Jr., I Marx, R. Pollack and H. Weltzner L.am-
also very plegsed to acknowledge that the work would not have beém atfempted in any“

other environment than that created by Ed Begle and SMSG °

B3 . ‘» a3 ) 3 " .
. - Victor T’wersky - e
- N .t~ . < . ~

A1

Umver?z}ty of Illinois-atChicago Circle C N A .
Department of Mathematlcs December, d9,66 Lo
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) , ' " ¢ * INTRODUCTION V. !
. 0«‘ ,.. -t . - »
- ~ ] - ’ - .
o UL How did you hear about’ calculus? : t
~ - v * .
o o "How did you tiear about HeJen of Troy? N
AN ) ’ ~

o . ".And have you yet heard the story about Al?,

) Jo- The Scope o'f-Calculus <0 L L . -

Calculus 5 s the study of the derivative and the integral, the relationship between’
these concepts and their applications. The great advance which takes the calculus
i beyond algebra and geometry is based on the concept of llmit The basm limit proce-
dure of the.dlfferentlal calculus is typ1f1ed by the problem of Tinding the _slope of a,
curve; the basic limit procequre of the intégral calculus is typ1f1ed by the problem of
_fmdmg ‘the, area enclosed by a curve, The slppe is “foudd as aderlvatwe the area as
" an mtegral and superficially these appeayr to be unrelated. But there is only one
caleulus derlvatwe and mtegral are complementary ideas. K we take the slope of
“he graph-of the area function, we are brought back to the ¢urve itself, If we take the
area undgr the graph of the slope fuiction, wé find .the original curve again. The Timit
concept in its guises of, de.rrvatlve and’integral, together with this inverge relation °

*

o v L between the two,(prmndes the fundamen’tal framework for the caloulus ) .

S

‘area, but these’ are only two among awide range of interpretations We usually begin
with slope and ared {n order to introduce parts of the sub)@t in an intuitive, geomet-
ricalway. But although an 1ntu1t1ve geometrlcal mtroductlon is 'useful and suggestive,
it mﬁst necessarlly be based on very familiar steps, The steps are so familiar that
- it may not seem that they could l'ead u1t1mate1y to entirely new methods for solving ¥
K . completely dlfferent problems thg@ those. encountered in earl er courses. We should “
- therefore stgess that the concepts of derivative a.nd nﬁegral are un).versal and thelr
A mcorporatlon intg a calculus a system of reckonlng, enables us to solve slgniflcant
._ problems in all branches of science. We can | set the stage for a systematu:’develop-
""" ment of the subject, ‘and emphasize the umversahty of the concepts by mentioning new
kinds of prpblems at the very start of the course, Then in addltion to solving problems
. that are pr;marily vehicles for the-development of theory or for the illustvation of .
<L techmques problems which do not begin to suggést the full scope of the sub]ect the

L] L .- . ]

.
¥
1
.
g
®

The derlvative and the integral may be mteppreted geometrlcally as slope afid s .

* Lq‘h"-
.

-




4 -\ : S S
course itself should also include significant applications of the calculus. Problems
for wh1ch o methods of the earlier mathematlcal courses are partmularly helpful can

*be found in very fam111ar contexts --problems that range from the Spreadmg of rumors
to the colors of the rainbow —and their very fam111ar1ty serves to emphasme the N
* novelty of the methods. : o s

, . "
. No methods of the earlier courses help answer questions such as: How dlfou

first hear about calculus? How did you first hear.about ‘Helen of Troy" To frame
such questions mathemat1cally, we must first 1solate some essential features: Som
stories spread like f1res others die out. If the story is too dull, nobody bothers to /
repeat it, But if the story fs good, some of the people who hear it (and remember it)

pass it along. Startmg from these ideas, how far could one get by pre-calculus:. .
methods'P . ' . e
%A TQhe same concepts that are bas1c to the spreading of stor1es are also basic to\ the
processes of forgettmg and learnmg So many of the facts and procedures we stuffed
.into cfur heads and néver used afterwards seem to have vanished., Others that we met
repeatedly and actually worked w1th have become so much a part of ourselves that we
—~ ‘ feel we have always known them Our f1rst exposures to these facts may not have
taken, but repeated encounters in dlfferent* contexts finally left their- ‘mark. (We take
this as the theme of Chapter 2,) ©

x

- Can we fonstruct a mathematlcal descr1ptlon for the way that stories spread — v
the way that ve learn, and forget'P Starting from, approp'mate assumptlons (the math-
. : ,ematleal model) we can discuss some limited aspects of such processes w1th the aid -
a~of elementary calculus Such processes 1llustrafe a broad class of phenomena whose
umfymg features are the basic mathematlcal _models, for growth decay, and competi-
tlon Besides help1ng to descrihe the. spreadmg of rumors, and learning or forgettmg,
these-samemathematichl models serve to clar1fy our obserVatlons of radioactive —
. decdy, the attenuation of sunlight by a cloudy sky, the’ progress of chemical reactlons,
. the growth of bacterial colénies, or the spread of diseage through a city. In éach of
‘these s1tuatlons the essentlal feature is that the amount of some quantity is changmg
& (with respect to t1me or distance, or whatever) at a rate proportional to the amount
alre'ady present, A process of this sort can be mathematlcally descnbed by a cer-
‘taih type of equation (a differential equat;on) whose solutions, at l'east in the s1mplest

cases, are combmatlons of eXponential funétions. ’ SR
’
Other processes of pature change 1n a cycllc or periodic way; they repeat in
1dentlcal form each year, each second, or every mch The planeta'ry motions, the ~ . )
) tldes, the harmomous chords of music, the propagaglon of x-ra;fs through crystals — \' :
even the colors of oil films on water — all depend on periodic phenomena: ~For such
_processes, the rate of change of the rate of change of some quantity is (negatively) -

proportlonal to the quantity itself, and the mathematical thodel leads to a d1fferent

. -

4 ! -
i ' ¢ .-

. - .
LAY .« ‘



perhour for each hour of driving? At what angle should you throw a ball for it-to

: ¢ . -

class of differential equatidns whos&golutions, in the simplest ¢ases, are tombina-

tions of trigonometric functions. .

1 ’ . . N
. * . .
v .

With the calcylus we may also investigate more complicated natural processes
that mvolve‘a combination of growth or decay with some sort of cycl1c behavior. We
may also solve much s1mpler problems How much time will it take to drive 300 >

mlles if you start at a*speed of 20 m11es per hour, but increase your speed by 2 miles”

tra"vel as far as pos.§1ble? In what directions withrrespect to the sun are the rainbow | »
. A

L4 | i
colors ‘strongest? . ! . )

. - ’

. .

These problems and many others which the calculus solves involve rates of éhange
this is the province of the differential calculus. A second broad variéty of questions
is ‘concerned w1th totality —the summing of small effe‘cts this is the province Qf the '
integral calculus. ~By recordmg your speed during a long trlp, w1th many acceleratlons )
and decelerations, can'you calculate how far the trip has taken you? If we know how a
single drop of ink spreads on a blotter can we predict what happens if we spill the :
whole bottle ? Starting with a simple source ‘of radlatlon can we predict the total . h
radiation from 4n extended d1str1but1on of such s0urces'? Knowing the way a single*
«droplet of water perturbs 2 ray of suﬁ.ght, c“)m‘ we determine how*much ll}ght reacheg
us on a cloudy day from the entire overcast sky? |

Such summation or iﬁtegration\problems are closely related to the rate —of—chafrge
or differentiation problems the total effects result from an addition'of small >

* variations. Therefore we do not study separately an integral calculus and a-d1fferen- /

tlal calctilus. We study a calculus c‘omprlsmg both differentiaion and mtegration and
each aspect helps us to understand and apply the other. ot

v
v

Most of the appjlcatlons of calculus emphasize thei:ffects of variation or summa- °
s. Except for the simplest / '
proklems of this type, the methods of arithmetic, geometry, and algebra gre inadequate/ o
| % v

tion. "Calculus' was tailor-made to treat such proble

and even for the simpler pro"blems the methods of célqulus are the more efficient or

-

the more suggestive. . .-

. *

know as a.nal sis, we owe much of fhe progress in the physical sciences and mgdern
‘\ 3

engmeermg, andmore recently in'the blolog‘ltal and soc¢ial sc,lenceS The con pts

’

~

Aruitoxt provided by Eic:
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even th‘e‘rxght reflexes for the major part of the applications of mathema,tlc ,to the
sciences. - .. e + .
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We should therefore emphasize applxcatxons in a general course, not Just to show
that calculus provxdes useful methogs-ant concepts for the scu,nces;cbut because so
much o the calculus was developed ta solve Specxfxc problems. We should show the
student how the effort to solve physical problems led to, mgthods of the calculus, how
the attempt to make the best use of these methods and ‘to understand their full scope
[ and limitations led Yo the development of the calculus as an 1ndepender)( Study, and how

the products of this, study in turn led to deeper insight into the original ploblems We*

-

+ should show that science enrxches mathematxcs by providing significant problems and
. concrete difficulties, rand that ‘mathematics enriches science by providing solutxons of <
' problems and system and orgamzatxen We“should balance accounts of physical moti-
vations of mathematmel pw:w/ u"es with mathematical fornmlations of physxcal phe- .

nomena, and match concept for concept that each has acquired from the»other

. - An ideal general course in calculus \vould maintain a‘balance of topxcs and of o
viewpoints that would meet the 1equ1rements of students who will become mathematx—
' cians, others who will become scientists primarily 1nterested in applxcatxons and
’ still others for whom mathemat1cs will become sxmply one of many dgep 1ntellectual
. experlehqes during thef® education. For the stﬁdent of science, a fluent infuitive grasp
of mathematlcal methoas is a primary need, for the student of mathematlcs a caneful
deducuve de\?elopment is essentiil. These d1ffe1 ent vxewpoxnts confhct on occasion, =
. but they also supplen)ent each other, and both thq scientist and the mathematxclan gain

by a deeper appl ecxatxon of both thes€e views and of their interrelations. »
-~

Hlstorxcauh*_he replacement of an intuitive basrs for the calculus (the method of
_ infinitesimals) by a careful logical structure (the method of limits) marked a vital ' ~
phase in the deve10pment of mathematics. This phase is far from complete. We'are

" “still attemptmg to learn how to combine intuition in approaching new rﬁ‘oblems with.

. the effectxve uge of logxc not only to temper and to, verxfy our 1ntu1tmn butto perm1t .

generalxzatxor\s of broader apph'cabxlxty Today, ‘most mathematxcmns appreciate the .

R essential ;ole\s of both 1ntu1t1ve*and deductxve procedures, not only for creating mathe—--
matx@s but for learning it ahd for teach1ng it, and it is partxcularly unportant to stress
the1r mterplay 1n’1ntroductory courses. T . ' .

f -

’ ~— ’ [BR
» . > ~

. . 2. Systematxc Approaches to Calculus-Science Programs ' . .
R , P , - . . - . -

development of fundamental theory that stresses the novel: featur_ : of ca’lculus arg

- 1nd1cates ity relations’ to the earlier arithmetic, algebra, and ge metry, as well as to ‘
- the later analysis. The 1mt1al level of rxgor should be appropriate for the Students,;:
- and the problems that motxvate the development ‘of the subJeet and the exercxses that
- illustrate some of its spec1al consequences or develop manipulative skill, should be .
“ﬁswrneamngful to the students. After some grounding in theory and with some facxhty 1n“
’ . \ : :
- ~ '
Q )
"ERIC - *
s :
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. .

techniques, we should attempt some systemati‘c development, of applica.tions of the

calculus to the sciences. s e . . [% .

To serve up 4pplications only as isolated ;Srpblems and exercises provrdes the
student with «n 1indigestible stew of unrelated mgﬁedlents.‘ Ta exhibit the mathemati-
cal smencss as, short-order menus and applied mdthematlcs as the correspondmg cook
book recrpes 1 criminal. To shuffle together menus and rec1pes and rules of cookihg-
without mnemonic guides ylelds only an unteachdble and unleagnable mess. When we
teach calculus, let us teach calculus. And when we consider dpplicatlons within a sys;

. tematic development of the basic concepts of the,éalculus let us attempt to do so m a

, »

. systematlc way as concrete, steps in the ascent.. -

L%
_ There are two different systematic dapproaches we could follow. We could pick
one general method of the calculus and show how it is used in many different sciences,

or we could pick one general topic of science and show how dif.ferent ‘methods of the

calculus have furthered its-dev q—lopment Because these twd procedures are essen-

L 'ma.lly different, and because both are mdicatlve of the way applied mathematicians a.nd

i3

mdthematlcal scientists work in pra.ctlce, we follow both procedures.,

¢
[N

Chapter 2'(Growth, Decay, and Competition) illustrates the first approach It
develops mathematical models and shows how they are used in vagious sciencegs. To

“stress the generahty uof the mathematics “and that the equations are completely inde-

* pendent of any scientific dlsmphne,,the models are introduced to describe the spread-

g of stories. The equations are then applied to radieactive decay, electric circuits,
' attenuation of sunlight and the color of the sky, propagation of nerve impulses, for-

gettmg and learning, chemical reactlons and to sociology. This chapter stresses that
desplte the marked dlfferences 1n the classes of phenomena studied in the various
sciences, ‘there are a number of processes that are fundamental to all. The same .
mathem'atical strut.tures and consequently the same underlymgdcomfepts are en-
countered ag‘am and again in dlfferent contexts of nature, The eqdations are the same,

’ but the functions md varidbles represent different measureable quantities with dlffer—

ent names thAt change frogx sgience to science. ),, ‘. . "
N

Chapter 3 ((‘geometrlcal Optlcs and Wa»es)'lllust/?.tes the second systematlc
approagh to appllca,npns. It follows a sequence of physTbal concepts (ax10ms called /
' "aws of nature") and shows how vamous ‘methods of thé calculus supplement each
other in reveahng,the 1mphcrt consequences. 1t starts with very restrictive lzzws,
weakens them, and thereby generalizes the development The ‘procedure is "quas1-
.‘axmmatlc." The laws contain undefined terms (as q,o the axioms of a,mathematical
system), and rmp.helt restrlctlons on the 4§5001ated observational and computational
techmques (essentlal} 48 in mathematics where axioms are usually stated in an
. 1mIphclt c‘ontext) The developmem suggests the heurlstlc search for first pr1n01ples

antl shows that physics, like mathemamcs is, cumulatlve basic concepts ‘thousands of

. g
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- more general set of axroms The chapter cons1ders geometrical propagation and re-

~

S . .
.
N .
+ / .
- ., L)
1

years old are first accepbed as laws and then exhlblted as.special consequences of a .

flectlon (Euchd Hero caustlcs shadows edge dlffractlon elkonalse, refraction (Snell,

Fern’xat- rambows mlrages), energy conservatlon (Kepler -Lambert), waves and super-
~ position (Huygens, Newton, Young, Fraunhofer Raylelgh Born), Rayleigh's theory for

the cclor of the sky, Fresnel diffraction and the method of stationary phase, and some ’

feat.ures of the complete mathematical model for scatterlng

‘In thescourse of Ghapter 2 we 1ntroduce many special labels from dlfferept‘
sciences. Howewer, these are not essential to the mathematics, and we rarely" elabo-
rate on them: mstead “we emphasrze“ that as far AsS the present development is' con-
cerned, they are merely différent temporary names for the same mathematical com-
ponents: The primary aim is to illustrate how one mathematlcal model basedon " *
calculus covers a var1ety of different phenomena. OQn the other hand m Chapter 3, sve
seek to pr esent a sequernce of phySICal comtepts in a mathematical way (the structured

development of maJor topics is'an essential mathethatical feature of this chapter) and

" to provide the physical motivation for several mathematical techmques that are basic

to wave_&hysws We introduce these techmqueswm easy contexts where the results
can be obtained directly,-and then apply them (some in {:onslderable depth) in more

combplicated 31tuatlons - " S .
- p
-* Both Chapters can be fltted strutturally in a calculus program ndt only to 1llus—

trate many eIementary concept's and methods, But to help provide mogvatlon for sub-
sequent developments The flrst which uses only elesnentary preéedures to solve the J
équations that arl%e provrdes a lead-in to a systematic d1scusslon of elementary dif-
ferential equations and techniques of 1ntegratlon {and it serves tms purpose for Chap-
ter 10 of the SMSG Calculus); similarly for the second and ul_trple ;nteg;‘aﬁf line ..
and surface mtegrals partlal dlfferentlal equatlons etc/g‘ ' ‘

~ N S S~

The tWo chapters on mathemat1cs and science are very.d).fferent Both attempt

. - -

systematxc approaches but the first uses mathematlcs as the guld,\pg thread, and the
second uses sciemce as the thread. The chapters supplement each other in indicating
‘the ways that mathematxcs and sclénce interact, and may St{?est crossing th;eads of
a fabric. The two speéxﬁc threads we. follow 1n‘tersect at R:iylelgh's theory for the ,
color of the sky m Chaptg;r 2, it is‘a speclal case’of a general attenua‘tlon-process,
in Chapter 3, 4 specxal case of a g‘enerai scattering process, ' The chapters together*

.t &

may Suggest that mathematlcs and’ sclence provide the threads that give structure to

<

oyr concept of fature, MRS N

7 Ce LT e . o .
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3. Style, Rigor, Notation, and All' That, , . !

-

Parts of Chapter 2 (wfuch isa selft-contamed rev1sron of Chapter 9 of the S_MSG
Calculus) are written in a nelatwely llgh‘f vem in an attempt to break the monotony gf
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. - the constant iteration of the basic material. It is easy to read (at least by 12th grade
students), and the model fox stoty spreadmg picks up the threads of Sect1on L.1on
""How did you hear about calculus? How did you hear about"Helen of Troy ?. .",‘ eté.
When we convert the equatmns to:. model,f,or forgettmg anll memor1zmg isolated facts)
we pick up other threads About half of the apphcatlons méntioned in Sectian 1.1 are
covered in the next chapter, and many of the others are covered in the ‘f1nal chaptez.
The sizk of the space or thegomplexity of the equations allotted’to the dlfferent dis-

c1p‘11nes touched on in Chapter 2 is not meant to correspond to the1r meomance or to

(3

'
T -

the writer's preferences (except for story spreadmg)

. If Chapter 2 represents a set of hors d'oeuvres w1th 3 comynon ﬂavor ‘then Chap-

ter 3 (which 1s much harder) represénts a substantial dmner with a structured se-

. e quence of d1shes This material (in some\what ?hfferent form) was 1mti’ally assembled
to pr0v1de e 1ntroductory lectures fof the writer's graduate courses m Scattering
Theory in the Mathemati¢s Departments of Stanford University and of the Techmon-

. Israel/l'z;stltute of Technology The d1fferent backgrounds of the students, (mathemat-

’ ics, ph}sms, and electrical englneermg) “calléd for a general elementary survey to

introduce fundamental concepts ‘and terms,. and this’ a,lso served to prov1de ‘motivation

for the mathematmal model of scattering, for cons1der1ng certain classes of problems,
and for the development of both analytic and heur1st1c procedures The present‘version,

Chapter 3, is m general‘ more elaborate; itfwas ampltﬁed 1mt1ally to serve as a larger

iques. (as/Chapter 15 of the SMSG alculus), and then revised

€ver, the final portion of Sect1on 3.9 1is largely a

vehicle jor calculus tec
to make It more self-co tained. H

should lead into Green's theorem, Maxwell's eduations,

e

v

st\op-g,ap for a developmEnt t

L3

the acoustic \equations and Schrodinger's equation.

. -

- s
7 .

Chapter 3, w}uch attempts to g1ve an individual esthetically complete p1cture of g

portlon of wave phys1cs is hmdered because it has only a quitg limited number of !

physical concepts and mathematical methods, ava1lable for the development We pro- v

‘ceed heurigtically in some cases (sometimes the ngorous procedure is mentioned

parenthetlca‘lly), and in other, cases we visualize expenments and anticipate refme-

,mat1cal develop ent is mformal and some discussions (probably many mone—than

s N
o

J‘,ntended) are no more than suggestive.. .

. As for notatmn the following warmhg for the writer's matérial was included (by

another member of the team) in the Calculus: Teachers (tommenta ry (p 655):

¥

~ ments in attempts to prqude some substitute for the mtu1t1on that comes with f1rst ¢
d exper1ence. 11t is hard to be both- s1mple and honest‘ and to avoid-using ;mphcltly
. :éay more complete results that are available. Attempts have been made to Weed out
l;lunders and overs1ghts but tworms of varlous sections are still only prov1sional ‘
e versions of what the writer would like them to be In any case,nmiuch of the mathe-
' /

3
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"In scientlflc usage there are often notatlonal a.mblgulmes whlch we- have not
eliminated. When v
-t — N, not that N'itselfis a functlon Careless parap?nrase of thls express1on”
leads to the use of - N(t) for u(t), a partlcularly bad but commap, notatlon in smence._
"Whlle at first encounter such amblgultles may distress the_ student he_g).ay take [
comfort in the realization that comprehenswh of this and future smentlflc materlal

he rﬁa‘y réad can be ephanced by less'cumbersom/e —if less’ pr cise —notation. "

L4

A less speclfltvwbﬁnmg on notation that 1s also appropr/ate was written by the

late 1, Marx and ‘perturbed by the writer in 1964 $ e /

""When a functlbn f is defined by a formu}a such as /i(x) = xa('yé 4x)/ we distin-
gulsh between the function f, an agsignment of values to all x in /t‘he domam of f, and
the values f(x), the number‘s assigned. Suré-lﬁrly, in %eometry ve d1st1ngu1sh between.
a L P antl the coordmates (3 2) of the pomt al d’betwee acurv C and the

‘equataon (x+1)? = 2(y < 2) of the curve. However
is unlikely, ‘we shall omlt certain words (whlch s
accuracy) with the understandmg that t ey are i phclt We .shall shorten *'the
/1 the tion f(x) = x2(72 - 4x)' Tt point &
P w1th coordmates (3 —2)“ to 'the pomt (3 -2)tf and 'the curve .C mth equation -

;
tion f with values f(x) x2(72 4x)

X+ 1)2 = 2(y "2)" to the curve 113 +4 2= 2(y -2)'. In r(eédmg such phrases, we keep
in mmd that the mathematlcalyb”ct and 1ts esentatlon by a formula or set of num-

bers are quite distinct: the repre7éntatlon ig ased to replace the object in order to

make the material easier to read Of oursg, such ablzrewatlons are usually used
conversatlonally by professional r;latZemat cigns, but they avoid them when they write

for mathematlcs journals:”

’ [
(wluch. would make the article bsolutely e_adable) but by leavmg out almogtall , . _ .

L'ﬂ-""”""

Words (whlch makes the ar.tfc e only ¢o - ‘3

\ -

4 Collateral Readmgand rénces. [ . . . .

Those who may not yet jLave read °preceding books of the SMSG mathyscie’nce .
senes should read the excellent andr ively volume%

’1\) M. Schlffer, Apphed Mathematl s nth°e ngh School Vol. X of SMSG Studlges in /

[ - L

Mathematlcs, 1963; - . e - . . }

George Polya, Mathematlcal Methclds 1 Smence, VoL XF of SMSG Studies in Mathe-
) matlcs, 1963. \'t . "
f

i
Part of the followmg dlscdssmgs .0 X)op latlon. growth and Euclidean Optlcs is.based

on Volume X (whlch asgumes no cal tilug, and uses dlfference equatlons instead of dif-

>~
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Pract1calty,€4erytlungrm the follomng chapters is included m Calculus Student
Text plus Teachers Commenta,ry (SMSG Calculus Team, Chau‘man ALA, B,lank), )

SMSG, 1966. e ‘ .

% Ef‘me of this text's alternatlve versions of the present materlal may well prove
more pala.table and some of the results that are simply stated in the present volume

. - were assigned as problems in the Calculus :Mth worked solutlons included in the

s,
Teachers Commentary This text-also mcludes H. Weitzner's Chapter on mechanics
and oscillatory phenomena many additional problems that extend the utility of the
present chapters, and much additional material of interest to ma.th sc1ence programs.

Many of the physics topics touched on in Chapter 2 are covered ina good general
. college text on phys'ics that uses calculus‘ ) : .
. Fow, Sears and Mdrk W. mansl\y, University Phys1cs, Addison-Wesley Press Inc.,

3 Mass , 1952, ’ . : ‘

_H...,,.......‘ More Tesults on rwaqlmactxz/e disintegration are given by ) (,.‘_%ﬁl _
Henry Semat, Atom1c Phisics; Rmehart and Co., Inc?, New York, 1946, !

- Chemical ,reactxons are fdiscussed in detall by :
4 ' %
S. Glasstone, Phys1cal hem1stry, Ch. XI, D. Van Nostrand Co., Inc., New York, 1940r
. - . Y
Thé model fér learnm.% is* based on .+ : ' ;;“?""
. H. Von Foerster, %antum Theory of Memory, Transactions of, Sixth Conference og
Cybernetics, pp. 112-134,' Josiah Macy, Jx. Foundation, New York, 1956. *
~ : , .
« The Section on propagation of nerve impulses is based on the work of Blair, and
Rashevsky as d1scussed by PR IR I
- ' N Rashevsky, Mathematwal, Blophysacs Ch XXTI1, Umvers1ty of Chieago Press, .

oty T Tincis, 148, ! . e

s B e -
and the d1scuss1on f Soclology was' mr‘:ived <from

Bl o+ 3 w B OE ok ¥ ' ° .

N Rashevsky, Mathematlcal Theory of Himan Relations, Principia Press Indiana,

ey . 0 < v '~‘1947“ . \ )

As for Chapter 3, an exc1tmg, ncm—mathemaucal book on natural visual phenom-
ena'is that by ) . ) ' '

’\"_, M anaert Light and ‘Color in the Open A1r Dover Publtcatlons Inc., New York,.

ey e 1954 - . " T - s

K "'anda c'fetaﬂed h1stor1cal dev;Zlopment of 0pt1CS is given by ) D

;sj ,.-A " Ernst Mach The Prmc1ples of Physical Optics, Dover‘Pubhcatmns Inc., New-York

5
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A good general ¢ollege text oqsgeometrlcal and waye optlcs is
F.A. Jenkms md H. E. Whlte Fundamentals of Optlcs McGraw—Hlll Bodk Co., Inc.,
i
* New Yor 1957.. HER * ,
: % . o o . .
A detailed d 'scussion of tl& wave fronts for reflection from a concave hemisphgle 1s .

[ e

given by : . . T
i N
R.W. Wgod, Physical Oglc , P- 54££ The Machllan Co New York 1934

Detailg¢ d d1scuss10ns of var}ous aspects of wave physxcs are g1ven by

R B Lmdsay, Vlechanfca.l,Radlatlon, McGra,w Hilly New Yozk, 1960
7§
Phtographs of the causti s of* edge waves (or edge rays) are gwen by

J/. Couldon’ and G.'G. Bec;knell Remprocal Diffraction Relattons Between Circular and
Elhptlcal Plates oPhy,slcal Review XX, pp. 594-600 (195%) An Extens,xon of the
« Principle of the Dxffractlon Evolute and Some of Its Structural Detaxl, Phys;cal

rh i

Review XX, pp.. 607-812 (1922).

' ; i

The discussion of Raylexgh scattermg is based én” papers number %f’nd 247 of .

Lord Raylexgh Selentlﬂc Papers Dover Pubhcatlons Ine., New YE k 1&64

The extens$ion of geometrical optics to diffraction and to other "ph
!

Flcal optics"

o * phenomena is given by

' *'Vol. 8, Amer. Math Soc., Providence, R.1., 1958, .
. 1{:' [
. Introductory discussjons to mathematlcal aspects of wave phe’1

{
3 J‘
. 4.B. Keller, A Geometrioal Theory of Diffraction, pp. 27-52, Prof Symp Appl Math
'i:

g

;nvolvmg morem
f.

than one scatterer are included 1n ‘ ;
g }

’ i

~V. Twersky, Multiple Scattermg of Waves and Optical f’henorr en TJournal of the
Optlcal Soc1ety of Anferica 52 pp 145-171 (1962)‘ -l o
1

-
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ok
, ; We reyogmze that i'he mature areaseof today's sciences have hnderg'one lopg
h/istorical *de&elopment to reach their pre nt s-ystematic deductive stage THere

to syste atize oyr knowledge of nature. We qxploit yesterday's sc'efxce td inv nt

b day's,tools to dif(:over the science of tomorrow.

, s ' deduci:ive system —from the 1n1t1a1 class1f1caflon of related phenomena to the seamlr- —— e
for the least number of fundamental prmc1p1es on wh1ch they depend — from the estab— -
lishment of laws of nature which serve essentially I8 axioms for a deductivg systen;
“to the unfolding of the eonsequences implicit in such mathematical models of natural
phenomena Science deals w%h phenomena —with observations pred1ctions and,

Y ke o LMW PN P Y ,[7;" .

) experiments on nature. Special areas of sc1ence require special. equipment an -
special meq.surement techniques All areas ,require mathematical thinking, mathe—

o '

{ * 'matical tools and mathematical models.
- g - ’ .. '
R ’ ”IZI the sciences from astroxiomy to zoology, uge mathematical models for com- ¢
, -pli;

° d phenomena observed in nature. To construct a model isgate the effects
»
that appear to ‘be fundamental, and we define reIevant variables ameters, and

¥ THA

o - functions As suggested by our observations and measurements we seek appropriate ’ f'
.. : ) equations for the dependence of the functions on the essential_variables, t8r complete- -
\ ness, we may have to introduée auxihary\conditions that specify, for example, the '
' initia'.i values of the ’functions androf the variables at ghe start of a process. The N
BN ¥ e Y
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- solutions of the equatlons sub]ect to"the auxiliary restrlctlons may then be compared

wﬁh add1tlonal measurements to determine their domam of apphcablllty in nature,

¥

We make observations, we create models,'we make predictions; we make more
observations, more models more oredictions we day-dream and jump to.conclusions;
we seek to verify our guesses, and keep the Very few that pas$ the tests. By such
means, by a mixture of measurements, mathematlcs and mysticism wesseek to
"understand" what is going on around us. If we can predlct and describe a process .

and relate it to analogous p-rocesses that we know about we are content —for a whlle

Desplte the marked dxfferences 1n the classes of phenomena studjed 1n the varlous
sc;ences thete are 4 number of processes that are fundamentatl to all, ’I'he same
mathematical structures, and consequently the same underlymg concepts, are en-~
countered agam angl»agam in different contexts of nature, The equatlons are the same,
hitt the functions and variables represent Jdifferent measureable quantltles with dif- |
ferent names that change from scienge to science> The stages and settings ‘are very
different, and the overall plots vary; but the subplots are rout1ne the actors go

through the same mothﬂS, and only the names of the characters are changed./

-

a

Let us consider a class of processes that is common to all the sciences, proc- % .

" esses that involve such notions as "growth " ""decay,” and "competition." We can
construct mathematlcal models for such processes by using either vefy general Ly
abstract mathematical language, or bmlng the special language pf one of the special

scxences To show complete ;mpartlahty, we do neither. Instead we use the language

Iy

for story telling. .

We begin with a story —a story about stories. Then we show how the same story

gca.n be told again agd again and again .

»
.
.

2. ‘L e Spread of a Story Model for. Growth ‘ Sner

\,,‘, ~n\>\«¢\;-'x..-<t» -, &

. Once upon a t1me {ty) Itold a number (No) of frlends a story about my good
fr1end Al. Months later (t1me t} someone came up and asked "Did you hear the one
akhout A1?" Since Ihad started the whole business, I didn't have to listen. Instead I .
asked myself "H\ow many {N(t)] people have Jnow heard the’ story about Al1?"

» -

How many people know the story about A1? Good stories spread and this was a
good one; the number of people that know 1t grbws with time. The number N{t) of *
pedple who know it at time,t should be proportlonal to the original gumber Np that
were told the story at time ty —to the Ny storytellers that couldn't keep a good thmg
to themselves, 'The older the story, the‘ more people know it. Therefore N{t) in-
creases with the length of time t + ¢, that the story has been circulating, as well as
with the number of people available to spreadt. If N(t) know the story at time t,
how many N(7) know it at a slightly later time 7? Since N(7) - N(t) must vanigh if i

0y

.
]
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col e, 3 il . . }
o exthtar N(t).or 7-t vamshes it is plausible to expect that the number N(1). - N(t) of g o
people who learn-the story in the small time mterval T-t is dxrectly pr0portional t: D
both N(t) and to the interval 7-t. We accept these 1deas as the initial assumptxons e
. and express them mathematically in the form NS e
) ¥ N() = N+ ANWlr-tl, N(tJ) Ny =L .
' e BRI T S
where Aisa posxtxve constant —the growth coeff1c1ent (}{ave we left out anything ?
Sure. We "11 falk about that later ) L : * }
Acceptmg (1) a's an adequate model;for the dhange m N over a small time inter-
Jal still does not tell us how N(t) is related to the initial value Np. To determine -
thxs we let the t1me interval approach zéro and thus replace d1) by a.differential \
equationy, and then mtegrate over time to obtain N(t) .in term's of Np.
B From (1) we have - R N ° ) . -
E ) ) % - . ., L
.. i -, N N(t s °
- (2) . o TT N - = AN(t) " . ,
- X ® M ]
, I we discount the fact that frxend’s come in mtegral packages (usually) and.go tg the él
' / b oo
/ limit as 7 approaches ,we obtain Y -]
, N -«
o wO AN(?) .
. y .
Equation (33{5tates that the instantaneou #rate of change of N is proportxonal to N:
this is tl‘y asic equation for growth. Later on, we will also consider the casg where °
. A isnegative; with A negative we hav sic equation for decay. (If A is zero, l
~ then N is a constant, and there is nothmg o talk about —neither for potential story- ) .
o~ t/Kars nor for us.) . ' - .
“15 »- \ : '
. In order to-ex,press N(t) explici.gzl‘y in terms vN, we integrate .
H—» I ey -
S1 _L) _L) Fo
. N(t) dt fr_o{n ,ty,tﬁnfi t ‘_»ti , 3 e ’ f Adt = f N(t) at ] y o
-and obtagn 3, ’ &
)] ' fog Nty ~ log Ntg) 5 log [N(to)] &E@;«\to) ) R
T "—‘ﬂ?&ér.«a B a s d
B Expressmg both sides of the'equatxon in terms of exponentials we have for 't, e sE
- ‘ A - b , ) B rerrt o= .
7 ~ - ‘. N ’ <
(5) \Z Nty = Nege ' = Npe %) T
R N . - - . . -_‘ N TR ‘;,.;.:J‘ :, AL C
As acheck, we differenti%@ (5), and Verify directly that R TR '
- NSRRI R .- e - P @ e
L3 . 1 ) . J» , R “' ) A 4
(8) ) T = angt Tt AN, A
,in accord with {3). . - - = - . v -
. - - - LI - ey
. o - N \ o ,.' =3
13 ) ‘ R Y
o . -3
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For.coﬁvenience in all that follows we take t, = 0 as the in‘itia} time. Thus (5)

becomes™ . . " N
. ——

©

1] . . L . &
NO) = Ne™, N, =N, S
’ AN

™

where t is the time that ,has elapsed since the start of the process . ’

.

-

From Equation (5), we seg that N v*was t ~ (1 e

laasr

bound aS“t' appr” aches 1nfmity) which is not realistic for‘ what we kn0w about story—

N mcreases beyond any

tellihg (and other growth proce sses). ‘Later on we consider a more realistlc model.
The present model is mcomplete and should be restrlcted to moderately small time

_ interval t. . - AN . ‘ S }

'We‘have told a story about stories to get to (7). Now that we have (7), we recog-
nize \that the result has other irterpretations and that the analy51s has 6ther applica-
“tions.’ Equation (7) provides an elementary mddel for the growth of t1mber and
vegetatlon the growth‘bf populatlons (people bacteria), tfe growth of moﬁeymi banks
(generous banks where they credit the interest fo the. eapital instantaneously), the

growth of a substance in the course of a ch?nucal reactxﬁn, and so on. i .

-
-

~ We can now ansvcver such questxbns as:
] ’ L I
If Itell 2 people the story at t = 0, and if the numé:?er N(t) that knows it grows
at a rate proportlonal to A =41 per day, then.how muqi{éf N(t) at time \t = 7 da.ys?

The answer from (7) is 2€7 or apprommately 2193 thus more than 2000

eople know '
the story a week after I started to spread it, ) D\ .
’ I I deposit $10 at 5% mterest per year and the/bank ad tﬁw

inal amount continuously, then when will it reach $20? For .

- .,

)- t. IThus

5
A= 100 it follows from (4) that log (10> ( . C

100
’ @
) = 13.9 years. ‘ .

-

= 20 log 2 20(0.693 ..

In the following we refer to an equation, say (3), of this secﬁon by wrifing (2:3.),—
ete. - ; ‘

- ¥ -. u. ! ' ‘
3. Radioactive Disintegration: Detay with Time.

Y ’ . .
The same considerations that led us to our simple model for growth apply, equally .
to the analogous model for decay (negative growth). “We't take a negatiye constant of 4
proportionality —A in (2:3) to correspond to N(t) decreasing in time, and apply

—AN(t) N(O) =N, 3

-

to the problem‘of r.admactive decay Different radioactive substances disintegrate at

Ny = N ™

different rates corresponding to different values of the decay coefflcient A. Itis con-
venient to express th® coefficfent in terms of the half-life of fhe substance, the time -

P . . g
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. it takes half of the initial amount of substance to disappear. (Why not the whole-life ?) .
" I 7is the half-life, thén from (1) we have - - SO N
- . - . ® ° -]
LN . . “e N . X v
. ERY "6 v ;o Nt) _ AT = 1 " ] . b7
~ . 2 't...f NO :
(] . ‘?"\é\" : .- R .
» so that . ’ , on , . * L [
- - *. R Y v 7 .. <q- N ~ . ” ‘e
f’f}:\ * N —- _}_ . . .
o (2) - = Tz‘}?g2=lgf2”“0693 RS :
T . ¢ TETA AT S AT ) el
' PYalf of the material Np will be lef{ at, time T, one-quarter will be left at time 27, etc '. . -
When will it all be gone? We see from (1) that in order for N to approach 0, we . a'h'
require that t approach infinity; we hdave N ~ ¢o for all A (all substances) as‘{{; w, .: "
and this is why the wholec:life is a useless measure. . ’ ,‘)’*» )
* ‘ LeTus consider a specific example The half ligg of radium is about 1600 years, - @
" " and the co}respondmg decay coefficient Ajs . . .o > "
* \ - . . “
. o 0.688_ .- S
. . A * 1600 ° 0.000433 per year . ‘ . ]
ver gy n N - ' ' . Y
If we stg_rt with some given amount (No) and wait a hundred years we get o
‘. o
log NE; ~ —0."%-88, and consequently N = 0.958No is the amount left. Thus only 4.2%
. disappears in one hundred years. . ' -
The basis for applying (1) to radioactivity is statistical i.e., it holds in the sense ~ Lt
. -~
’\ . of an ayerage Although the physical process is governed by probability, and we can- ¥ .
not tell when any one atom will disintegrate it'is quite useful to determme the mean
life ~time per atom, We start wrth Np atoms at t = 0 and end up with 0 atoms as. o
L & . ¢
o t approaches infinity, and we are interésted in the average length -of time that an N .
afom exists. & o , A R LN ATy
If n,-atoms disappear at time t,, and ny, atoms at time t,, et oo s,
. T . ‘ ,_',‘;_‘:,: - ‘:,_:.'ré;{c“
» - t1<t2<--.tk L ' g
N ‘ C . ‘ —— ‘ - e -
i L@ Lo TR . %
> gnd z n; = Ny, then the mean life-time of an atom is the average value . i
* . , * .
o : =1 . : Y

If the total’ number of atoms present in the interval (ti-1 t,) is N, , and Nj41 is.the

. number’present in the intérval (t; ,tm), then. . . L.
N i S . .
- e 7 m =N - Ny,
,f_\ . . . . " AN ‘ . B}
\ and the mean beécomes c - : g T ’
N . G - ¢ . ] ) ,
- (’ : -
» ) “ -
»
L S : A . B 95
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ﬁl' E ti Ny - Nyy).
0
i=1 .

Treating the relation between N and t as though it Were _continuous (essentially as
for (2:3)), we define the mean life-time as N

PO » [T .L };\-»Psbwv’ A -

X 1- 0. 1 0 *
e T = - tdN= = tdN . -
s N fNo Ny Y : . ' .

™ o

We now seek the relation” be‘tween the mean’ life-time T per. atom and the%'ecay e -
. .~ coefficient A. ) . P ~«~..\..a.~;,~.‘m.\-w.(,\.., s ngy \s
-~ . . ‘ —
. From (1), we have ’ - -
t .2 . . . .
L@ : dN(t) -AN(t)dt = -NjAe~Atdt . - > ..

Usmg 4), we change the mtegration variable in (3) to t, and the limits ’No anan to

PO the correspondmg values t=0and © - B .
- v e - .

3 . - L

T 6) . T = Af teMdt . o S S

To evaluate gthe~integral in (5), we regard it as the form f udv (w1thl(u =t and .
dv = e~Atdt).and integrate by parts:. - .. S

~ 3
‘ K - - b

5 o -At -At|®
S gt o [ 1 -
0 -A A% »

. . . . [N .
N . 2
- . .

°®

v

, -
- Substitutmg in (5), we obtaln . H
’ < ° N\ N —_
e T =21, . A I B
v i - _(6)_) - At .-.l\,,l.,«\~— "A b "_‘ ST, S, .
: ’fhus the mean life -time iis the reciprocal of the decay coefficient i -

- ¥ .
*We have a model for simple radioactive decay What is left af/ter an atom .
disintegrates ? Many things, including "daughter" atoms which can also disintegrate,

o Later on QVQ talk about some mother-daughter relationsy and discus$ the decay of ,
both poBulations. ) p, N

Y . P

The simple decay model we have been considering also descr1bes essential
features of many other phenomena”As another example within the same mathemati-
cal structure, we need change only the names of the characters in orde®for the
results t¢ apbly to the molecules of air in the room. Suppose that Ny is the total

) number of molecules present, N(t) is the number that have not had colllsions by time )

”

t, and that the meMr_ne between collisions 15“ T. Then -ﬁ(;) , the probability that,

&,



.

any one moleculé goes for, time t without a collision,

. (6): ,
. T . N{t) _ .-vT .
, (7) , . T, \e o

Same eqixation as previously, but the characte S are now playing different phy51cal

. roles and of T course the overall plot is qui, different, Were we to continue the
pre sent story we would require much additional structure, , if the mean velocity of the
molecules is &, titen L =,Tv is calM the mean freelpath —the average distance a
molecule travels between collisiong ~ But this path leads to statistical mechanics ~

«_ (which bases the physical properties of matter on the motions of molecules) and would
hY

take us too far afield. / e . : T E

’ -
. ~ »

Electrical c1rcu1ts offer several examples of decay processes. The. fundamental

- .
i v

roles are played by charge q, curr t I g—tq i and voltage or electromotive force V.

C% Simple circuit eomponents {capacitors er condensers resistors, '{nductorSvor' coils) .

. RN

B 7,are c;_haractemzed by constants c pacity C = g resistance R = ¥, and inductance

2

process described by

) . v . ] 77;.'
o . v _ -V ‘ .
®) ' - q* " TR ,
' and consequently v
. . .
. N _t/C ‘a3 ' ‘
©) ', VP =V VR = 2 eR, :
‘ where W is the initial voltdage on the condenser and qy the mitial charge. A current ’
T 1 flowing througha circuit consisting of.a, Jg‘oif and a resistor satisfies .
., . ‘ el & “’\wn&-\ N .
. dl R Ao ‘““‘Y o0 . .
B (10) - T! ( . ERSRED T e e
1 : ~ - g €
. -and consequently, . - : ® ]
g » ® ‘ . s -
(11) 1= e RV/L - '

5 . 4

R A - ,
-4 .(a" ‘,?* - ) ] :..._, ‘.A —_
. \ /_ S
, W .
-
T Od =~ :
T oad - e
- v ey e, -



.‘ dx

P : , T
(1 dN(x) _ -AN(X),  N(0)'= Ng;  N(x) = Nje™Ax

which we call the attenuation equation.

The’ attenuatxon of the earth's atmosphere avith alt1tude is described apptogimately
rx "by (1) with x as’the\ height above the earth's surface N(x) the number of molecules
*  per unit volume (the density) of atmosphere at helght x, and’ Ny the density at.ground
" level. There are different kinds of molecules in our atmosphere Mth different

L

w ar el
masses m, so that we should introduce m as a physical paraeter and write t

. ’

"(2) . S N(m,x) = No(m)e"‘.("‘)&

.for each constxtuent If one introduces more structure into the model it turns out

that A = ma, where a is 1nde.pendent of m (but depends on temperature, and the

s
3

acceleratlon of a'rav1ty) . : *

As an alternatwe settmg for (1), v1sua11ze a narrow beam of particles incident on

.

the face of a med1um of more massive partxcles as in Figure 2

Y

F

. FIGURE 1. .y
2 : o

.

There arcyl(o particles per unit volume of the incident beam and,nothing happens to
them until they encounter the medlum that starts at x = 0 Then as the beam pene-
trates, itg lightei partic.les hit the heavier ones of the medium and go off in other
diyections: particles of the’ incident beam® are lost to other directions by scattering.
-(Visualize a column of ghildren {rying to.charge through a crowd of milling adults,)
Thus N(x), the density of particles in the Jincident beam at a distance, x w1th1n the

medium is less than Ny; this attenuation is goverr:ed by the scattering coefficient per
§ A

unit length A (For other processes, den?fy along the beam may attenuate because

its particles cembine w1th the heavmrrones of'the medium )




: \ . . ° "
. g SN ) ’
. " . < . -
The'prmclpal characters in the above are particles —loose characters that can’
stand for electrons protons, children, etc If we now relabel N as neggz density

per umt volume or intensity, then the same plot also holds for light-rays, x-rays,

—rays and all' other kinds of waves meetmg approprlate obstacles. For the
particles, we mentloned one phys1cal parameter tlie mass m, and spo“’ke of partlcles
Ibelng scattered by more massive ones. For ,wave.s, the appropriate physical pa-
rameter 1s the waveleng‘_th A —e.g., the distance between adjacent crests of equally
spaced ripples on'a lake. The lo‘ngest wavelengths associated"with vigible light' give
the sensory impression called "'red,” and they are about twice as long as the shartest
of the Wave}engths assoc1ate& with visible "blue.” Frem blue light to ultra-violet to ,
X-rays to y-Tays we go to shorter and shorter electromagnetic wavelengths from rgd
light to infrared_to microwaves to radio waves we 30 to long lectromagnetlc wave-

, and other fundamental

*

lengths. We can,also talk about sound waves, water waves{and even the waves of
"probability amplitude'" associated with eIectrons, neutrong
" particles. ‘

. . = '
’ -

With N for interisity, (1) in terms of an approprlate A descrlbes the attenuatlon
- of a beam of sunllght penetratmg a cloud or a layer of fog, etc. We can use (1) to

determine the thlc?cness of lead shleﬁis to be usedevith dental x- ray equlpment or (

w1th a nuclea.r reactor to reduce stray radé’%tlon to a tolerable value. We could talk )
in greater detail on any of the aboxe but m‘ste,ad let us talk about someth1ng more

“ " colorful. T S - \') ) ‘ :
‘ let us consider Rayleigh's theory for the color of the sky. .The.essential feature
"of sunlight is that it isgpade up of light of different colors from red to blue (the
visible spectrum) with associated wavelengths Ar fo A, such that (approx‘imately) )

NEC R S Ar =2\, . T )

il

.
'

The wanglength A of an intermezliate colot (orange, yellow, green) satisfies
Ar > A > Ay Raylelgh showed that when a beam of light of wavelength A is

. scattered by the molecules of the earth's atmosphere (mainly n1trogen and oxygen),_ .
the intengity N(\,x) along the beam is governed approximately by (1) with

@ An=g Lt o

- L 3
where C is independent oft A. (In the chapter on optics and waves we discuss tg'lis’ .

-

more fully.) .

. From (4)%and (3) we have- . R no ’
p a . o ,

- i A M aa)? ‘ : g

(5) == = ] =16 - . .
: , AR N o . t
Lo L -

and consequently . - .
P _ t f
N : . - . : Lo
?‘Q‘ \)f o, v - 19 .2:/_. i -, v" i
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'(6) | . I‘L(,Ab’ ":__‘ -A{}sb)x _' -lﬁA()\r)x [N(Knx)] 1
C L Ny S° : . LN o
Thus thé blue componahf’of white llght is 16 times more strongly attenuated than 'the
red, A beam of \f/};lte sunhght reddens-with penetration into the earth's atmosphere
) bec se it loses fts blue component more, rapldly than its red, The blue that is lost
‘from the sunbeams by scattermg ives the sky its blue color in d1rectlons away from
the sun. The direct beamsxfyeom th8 overhead stn are still relatwely white because .
‘ they have not lost that much blue, The reddening of the diregt beams is best seen

4 -

when the sun is low on the hor1zon and its rays traverse maximum distance through

the scattering atmosphere; the clouds in the path of these rays are bathed in red.

Such colored effects and other scattering i)henomena«ansing from water drops, dust
icles, and other 1mpur1t1es in the atmosphere areﬁnore fully d1scussed in poetry

courses, ' - f' 3 K .. ) ’ !

5. Mother-Daughter Relations: Birth and Decay.

>

As mentioned previously, when a radioactlve gtom (the mother atom) d1smtegrates
it may give rise to a daughter atom which can also disintegrate. Let us now consider

such mother-daughter relations. & ~ .. - o -
Suppose we have N; mother atorhs which decay 4t the rate .
- dN . . | i Y
. . \ L . v Cw
@ : Cd@ = AN Ny(0) =Ny .

The rate at which the mothers decay equals the rate at which the daughters are .
created. But the daughteris also decay on their own: If N, mothers with birth coeff1-
cient A;,éive rise‘td N, daughters with decay coefficient A2 the rate of change of

the number of daughters is given by , . ~ -
Lot . sz N & 7\ ‘ o ¥ s
(2) d = AINI {"' AzNé Py B N2 (0) = 0 . I ‘ s
) Equatlons (1) and (2) form a pair of shnuF‘tanéous,‘equatlons for determining N, and
» Nz > ! ' Y B - ’l’

.
hd <

" Lét us first eonsider a lun1t1ng case such that the mothers decay very slowly
"‘compared to the daughters, *i‘“e., the decay coeff1cient of*the first is much smaller .
"than that of the second, A, <<A2 . "This corresponds, fof\example, to the behavior 3

for the" pair rad1um-radon. For rad1um mothers, the half-life is approx1mately 1600
L]

“. years: ‘A, = 1600 per year. The radon daughters have a half-life of about 4 days:

’

A o1 - 360days 1.7 90 - -
2 ¥ Tdays™™ year_ 4days = year®

..
! S

N .
Thus Ag = 144,0004,,. and we may take the number N, of mothers constant for the
" purpose of obtaining a first approximatlon of Ny(t). e

' I
| . T |
! ° ey 4 , 5 A | »
! - M ’ YA i W ) g
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Thus we regroup the terms in (2), replace t by t,, and integrate from t,v ..
to t, =t, - ) . . , N
! ’ ] ’ N B T .
) ‘ ’ Lo t dN, - «t . ‘
5 | , 3 e —_———— = . - " ' !
' oL v g e f AN - BN, - f a4 Co ' .
sub]ect ‘to the approxgnption that Ny is constant, We obtain i‘
s . . .
S N - e » log K(AlNl - A2N2) = rAzt y - '.'
: N o 9 . - “e
e a and - had N . . - ¢ ’ N o . .
rj{ DERIRE-A v . -
.o % SN KA - ApNy) = et ;
where the integration constant K is to be determined from the initial conditions at
t = 0, There are no daughters at t =0: D ¢ ) e
= ——‘—-xa..._.ﬂ**n-w.»‘ ¥ oot e Y s . N
- q‘Lf o - —A t :’ hd
I f " KéAlNl - 0) =e M2 =0 =71, L , -
~ P W NS I S o . - - . . ’
TR — ‘ : , o . )
M . 4 - - g ¥ o - ) o » .
i L »srw-a:.-;;:,; -, K = 1 - . ¢ .
. ‘ ::5&:&;«' - “ AiNl ‘ - N . ! . .

Consequentl‘y, the number, of daughters at time t'is given approximately by

4

§ Mwr s e .o '
e e e <§—2‘>N,(1 —ehyr LT .
L L AN, - , .
If Azt is vé‘ry large, then Nz approx1mates Azl , i.e., the number of daughter atoms
) - approaches a fixed fraction of the relatively inext mother substance. (This is called
‘ long term or secular equilibrium )esWhit' does this mean? It corresponds for . .
exa:mple to the case where Ny is a gas (such as radon) in a cloged container, and a

,‘ / situation where just as much Nféis created (from Ny) as is destroyed by radioactive
dN,

\ de%iy The/birth rate’ of Nz equals its death rate, so that —~ & 2 is zero; our result as

t approaches infinity in (3) »§ﬂ1us the same as that obtained by equa&ng (2) to zero, -

' R I ‘ ~
. Equihbrium corresponds to \ . ‘., ) e

3t s, no " , dﬁ ) . /A . ) -

3 2 . e | . -

@ S0 N =‘i§<ﬁ-—>m. S : .
N & - Ag L = 4 L

Before continuing the deve]opment let us feedback the above to our earlier dis—
\ cugsion of electrical circuits (3: 8). Equation (2) with N held constant 1s also the
® mafhematical relation for the.current I in an electrica.l circuit having resistance R,
& induct‘ance. L; and _external yoltage \'E s
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If V is constant and if I =0 att = 0, then the solution of (5) for the growth.of -
current in time is obtained by inspection 'of (2) and £3): . N
® R Teg (o™ ~

. 4 \ - ’ e LS . . H

HTV=0anrdI=I, at t = 0, then (5) reduces to {3:10),
Né6w back to mothers aid daughters, and let thesmothers also decay in (2). To

At
take this intQaccount we substitute the solution of (1), ie N,(t) = Nye 1 into (2)

-

and obtain . . > ) T
) t " dN l"-‘ ) "A t . . = .~
7 I + ApNp, = ANse
(.) e ek 1N0€
We solve for N, by using e as the "integratiné factor." We nofe that ;o
d( )_ﬁ"zt E_ézt-(d_Nz )A2t=
I Nze =g e’ +N xe =\& AgNgle 2 | >

i - - At
To exploit this, we multiply both sides of (7) by e 2 to obtain

d t At-A‘t s
. Slve’) = A TN

-
A -

and then replace t by t; and integrate from t, = 0 to t, =t

, v
Yl At-At
At ’ t At At ANo(ez 1 -1)
Ne“T":AN o 21 114t ! )
2 0 1N1o j;) 1 A <A, "
Since Np(0) = 0, we'thus have / - v
s ™ . Ay (-At ~At .-
8) Na(t) =A2—A'Nw -e ),

which reduces to (3) if A« Ay, and Alt 0. In distinction to the abproximatiOn
3), the present complete form N, of (8)vanishes both for t ~ 0 and t ~ e consg
quently Nz must have a maximum at a speclfic value of t. :

1
I.we differentiate (8) with respect to t we obtain - " /
@ dN; _  A4Nyp» (A o Ax' + A e-Azt) - , EPR
. ‘ N vy i A2 . . e
This vanishes, and N, has a maxiinum, when - o
+ - - a '
o -At At A A, -A )t :
1 Ale 1 . Aze 2 , __21_ = e( 1. 2) . )
From the logarithmic form, we obtain » -
. . logA‘ - logA, : ..
(10) : . t= A A : . ¢

_as the time when the number of daughters is largest., The Jmaximum value of . "

*

“At /A , “At A
‘daughters is Np = Nye 2 =<K12>I:Iwe 1o (A42>N, as in (4).
R W/
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P 6.' NeuraI?rocesses Shmulatlon and Decay

a o

. One ‘method of studying the exditation and propagation of nerve 1mpulses is based
-on, st1mulat1ng a nerve fiber electrically. Characteristic measurable effects are pro-
_do.ced in respénse to an electrical stimulus V (the voltage associated with a diréct™ ™
current the dxscharge of a condenser, or an alternatlng current), p rov1ded that V is’
greater t,hana threshold value Ve —the minimum value of V that is Just SuffiCIGl'lt to

cause the effects. A simple mpdel (introduced” by Blair on the basis of expenmental

“data) descnbes the ‘onset of the effects in terms of a local latency (also called the
"local excltatory functlon"l N(t) such that

) - e ,—-Q KV(t) - AN(),
R ._*___‘,\.\“ NN ) L
where K is the grth of the latency per second per unit st1mulus,\%nd A s its decay .
.coefficient. Thus the growth of N increases with the magnitude of the sgmulus and
decreases with N. (The function N may represent the d1fference between the con-
centration of an exciting ion at an electrode while V is apphed and 1ts concentration
for V = 0.) If N(t) reaches (or exceeds) a_threshold value N., then the nerve T
becomes excited (and a characteristic wave of physical-chemical changes with an

associated electric potential propagates’along the fiber).
The simplest-application of (1) is to the situation
2) i N(0) = . V() =V = constant ,

a - ¥

which corresponds to the apphcatlon of a constant stimulus at t1me t = 0. By
inspection of (5:2) and (5:3)#&the solution of (1):and (2) is .

-
-

@, " . N-= 1%‘-’(1’ - e‘A‘) )
et KV .
Thus as t ~ =, we see that N approaches its largest value Npax = ax - Conse™-
+ - quently excitation will occur if . *
B s ’ .

4y Nmax = ‘K‘%/e = Ne , ‘.
- or equivalently if the stimulating voltage satisfies .
T . . - AN, - W '

(5) o e ‘.”V = Ke = Ve ’ : . .
Y 3 .

i. ’ u~z~r -

where Ve is the threshold stimt&lus mentioned previously. (The value V, is known as
the rheobase, the threshold or liminal value of the constant voltage necessary for

excitation.) * . : -

Assuming that V > Ve (so that excitation must occur), ther{ the nerve becomes
excited at the time te corresponding to N of (3) reaching the threshold value
0 N ' 0

’ . N . -At N
(6) S Ne = K—I(l -e °), bt
- Y . /
~ - - {
" . 8
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- which is the 1 atent Qeriod that lapse between the 6 st b ishment of the constant.

N A - Ve, then te ~ o0 however _this is iént | ength of time for measure -
ment purgoses A more conven1e t meQsure is the val e of te correspondifg to
V = 2V, '

5 ' .

®

e e

This is known as the chrondxie 7— the latdnt tine hefor? excitation for the case of a. |

stimulating voltage equal to twice the threshold yalle. ! : Lo
¢ : e S '

What have we bgen doing in the above‘?' : ially changing the names of the * ‘

|

I

|

S \ v development to nonconstant values of V in ( 1) ] ‘ :
. I V is a funetion of t1me,ﬂwe solve (1) in te ms'of V = V(t) by proceeding "
essentially as for (5:7): we transpose AN to the\left side, multiply by et to obtain
& AN)eAt o= d%(NeM) =-KV(t)eM , integrate th left side explicitly, and regroup
. ’ ] . w
to obtain - n ) \ ‘ ‘
© - N = ‘A‘EN +Kf Vit)e dt,z
. <y
If N(0) = Ny =0, and V is-a. constant, then 9) reduces’to (3).
If we stimuiate the process by discha‘Fglng a conqenser of mltial cha.rge q, ;
capacity C ,and resistance R, then as in (3:9), \ r A /
‘ \ = ﬂ) -t/CR v o 5
’ (10) 9, . V(t) (C e’ - ’_\‘» . . #
¢ " ' N "‘l ‘.. - ’(Z
* Substituting in (9) and integratipg, we obtain for Ny = 0] o
. .\ - o \’
' I = —BdR__r -t/CR _ o-At . L
) - , = (CRA - ple ] . v
ey which is simply, (5:8) witjzdifferent labeis. Thus the excitation fqnction N hasa 0
maximum when ) - . ° - .
~ , ' -, - CR . ( e P ’
L@ . t=@-crals cih)- . / _
- : i i {
If the maximum value of N is prec1sely the threshold value, thef t of (12) is the |
-t . corresponding latent time from onset of stimulus V to release of a wave of activitfy

¢ ‘[/‘
. .
. “ {
. H

S A // )




l’ - N \I{
s, < e . /

ot ' o -

,yﬁ nerve. The corresponding initial voltage V(0) = s the thresmld initial

voltage of the cc}mdenser for excitation to occur. If the maximum does not equal the
threshold, then we relate the condenser's cha‘i‘acteristlcs to the threshold by -

- equating (11) to Ne and using V. = Ag’ to elimmate K. s o

I we stimulate the process by a smusmdal altemating current then the app11ed

e e—— -

. voltage is, R . - :
(13) - Se V(t) = Vo sinwty —— = \
where V, is the constant amphtude Subst1tut?r§§ 1:1 fi%o;m“(b) 0 we have / i
‘. -At R " - v /
(14) . . Nty = e™'KV, fo e sin wt1dt1 . S

To evaluate the integral in (14), we regard itas the_‘ior.m fudv (with u = & and
“7:. dv = sin wtdt) and integrate by parts: Lo

- - ) —
e At . Ly
‘ fe"‘t sin wtdt = Loswt fe"‘t cos wtdt. . /
-, . M [
AN v\‘ R - ey v e :\ v V‘M:W A
This doesn't look ‘as if it will get us any'where but let us handle the new integra} by
s again integrating bygarts (with dv = cos “wt dt): ]
4\ \(X\' \:.-n .At t , 7 ~
, A _ e cos wt, At . o A% £ oA -
;..fe smwtd}——’(v—fﬂﬁgetsm(‘{t-azfetsinwtdt. ‘ o
Transposing the' integral fromthe right-hand side to the left and.dividing through by .
2 ) o ;
1+ éz- we obtain <, N < ° {
w . . .
’ e At !
A - —we cos wt + Ae?t sin wt : . -
fk t 51]1 Zg)t dt (")2 + Az A . ’¢ - . ,.
‘_féen’sequently the solution’of (14) is S , .
; KV, : ¢
(15) N() = —2+—A (A sin wt - wcos wt + we At.). . . ,
The exponential term of (15) is sxgm‘flcant only for small values of t. As t ’
increases, e A' -becomes negligible and (15) reduces to
’ KvQ
(16) . N(t) = . AT (A sin wt - wcos wt). .
\ This periodic approximatlon has equall;\spaced extrema in time, which occur when”
. . .. -
' dN KVow 1 ,_.l(i> »
17 —_— = - ‘ -
(17) il (A cos wt + wsin w) =0, t=ctan(=).

-
v

Substituting these values oft into™(16), we find that t'heh‘maxima of N equal

. . ] . . ) Kvo I ‘a'ﬁ::;ﬂ )
(18) N'max = (wz + AZ) 2.° "

. N . . ‘.25 32 c e .
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If we equate N,,',.x to the_:_threshold value N., then V, of (18) corresponds to the
threshold valie of the amplitude’of the sinusoidal stimulus, say V,, ; however, the
. .result V& o« w? + A? has only very limited validity in nature.

.
- <
-

A ivrore Realistic Story About Stories: Bounded Growth,

T

* Let us return to our model for the spreadmg of stories (or of diseases, or of ink
s
blots), and mtroduce more struoture Prev1ously we assumed that the rate of change
of the number that knew™ the story at tune t was proportional only to the number

- .

o

itself: - - o __-g ) .,

-~ N . s N - — - =% oo TRE. wd xrg'} w5 s e
) dN(t) _ » ! — e .,

(1 . . SR =ANY, TN ETN,

.

This is all right as far as it goes,,.but it ignores the fact that fiere is an upper bound
(say Nm) on the number available, to hear it: the.re is.a ﬁmte ‘humber of people on
earth, same don't talk your langua.ge some don't talk at all and most never listen.
Furthermore, although we may tell the same person the same story a dozen times,

i ... each listener should be counted only once. ‘

In view of these considerations, we replace (1) by

dt AN(N—)-,

-

(2) N(0) = Ny, -

?

where N = N{t) know the story at time t and are a\/allab‘le to spread it, a.nd Nm - N
do-not know the story, have good hearing, and are enthuslastlc 11steners and potential

The factor N - N)

goss1ps N is the 1gnora.nt fractlon of the avallable populatlon
b m - . N\
== Dividing both sides of (2) by Nm, we mtroduce f= N as the fraction that know the
17 story, and work with’ -
[ N , *
" 3) ?:Af(l-f), f(0)=f0=—°.

A

J

Our ongmal model (1) gave N ~ Y as t * What does the present model give?

We expect that f ~1 as t ~ «/i.e., that eventually everyone knows the story. (Even
i

this model is far from complete ‘but at least this kmd of resutt 1s acceptable ) ‘From

(3) we see that df ~ 0 as f~1, ie that f stops chang whén eVeryone knows the
dt

story; from the discussion for (5: 4) we may surmise that g: ~ 0 as‘t ~ %, but let

us solve (3) and see the details ., . 3
From (3), we write ff(l—f) = fAdtt, where f; and t; are dummy variables.
(i-1 Y e

We decompose the integrand into "partial fractions." Since
. 4 :

, P

a%




astery about Al (see Appendix), you should by now have heard about the c¢alculus —or,

. ThlS is called the logistics equation. We st111 call A the growth coeff1c1ent and we

_maycall B fhe brakin ing coeff1c1ent because the term -BN? slows the growth. The ——

1 _1, 1 : . S
T fa-f) " f 1-1" .- ~ e
we obtain” e ’
f ' N
:1 - fi _ f . fo - EaS
f[fl + T fi:ldfi =log —. fl'fo--log 17" log ot At. . ‘
Thus solving for f, we have” . -- . . - e pln
) . foeAt i ‘ \\4 i - , } i
4 . - - Af==— - .
@ : 1+ fo(eA' 1) . . Co -
R * e B ! - *'3’?"

If t is small, then the denominator approx1mates umty and f = foe"‘t in accord

with the simplified model (1). On the other hand if t is large we rewrite (4) as

. fo ¢ ) ] .
+ —- ﬁ . N “
(5) f fo + (1 - fo)e t S . ‘
from which we see that f ~'1 as t ~ . «
. . _ E [

= .
The above model indicates some of the essentials but it is still incomplete. .
&

However, it is good enough to show that although you ma.y still not hdve heard the
. 4

" at least about Helen of Troy, TR

“/

8. lsopulation Problems: Gyé: Competition.

® S = AN ZBN?,  N(0) = K.

equation of unchecked growth, av AN permits N ~ © as t ~«, but Equation (1)
g at

does not. What bound does (1) impose on N? 'As in Section 7, we see that m‘—

when™A = BN: the corresponding value N = % must. be the equ1libr1um value

-
., .

which/N" approaches as t ~ o, ,‘A:tf

At one time, essentlally ((iit = AN ‘Xs used asa model for the growth of popula-

tlons of different countrles and this led t4 dire predictions as to the fate of mankind

» (law of Malthus) Then, essentlally (1) was mtroduced (by Verhulst) and-appropriate

-

' . / ) * . ¢

Y
.

e




L ) T,

A's and B's for various countries were obtained from their earlier census records;
the projected growth curves were remarkably accurate (at least for ail countr1es
except Verhulst's =-Belgium). The buildup of population growth arising from A has’
been 1nterpreted as due to cooperation betweén people, and the slow-down, associated
w1th B as due to competition between peqple ,i”or limlted resources, The ccﬁnpetltlon
1nterpretatlon is quite plaus1b1e if p isthe proba.blhty that a person wants a partlc—

ular thfng, then p? 1s the probability that two persons ‘want it simultaneously; if -

?‘ﬂ’,} },.t?

.

there are N persons then there are -M competmg pairs, and the total proba-

2
bility of competltlon is KE@ ; incorporating the linear term into the growth .. -
- . 3 4

term of the d1fferent1a1 equatlon we may take BN? as a plausible measure of the
g multaneous des1re or of the competitive urge. However the reason for regarding
as a measure of coo”peratlon is not clear. A probabllity interpretation simjlar
to that for BN®. indicates that AN corresponds té N persons acting quite 1ndepend-.
ently of ea¢h other, this may well be as'close to cooperation as one can expecot from‘
a group, and SMSG authors have therefore taken this as the guiding prinmple for
. 'preparmg the1r textbooks. '

<

Let us solve (1) by the, same procedure we used for (7:3), The steps are essen-
tally the same,.and we get . ¢ . - - 4 -

XS

" and consequently .
v . (2: . M . ) Nm NQeAt
) . T 1+ Ny(edt - 1)% '

P If t is small, then the denominator is approx1mately 1 + NotB ~»and (2) )
2 redicesto . * E

‘
< \
‘

i < T t(A-BN,) t(A-D)
! ' v N x Noe 0 = Noe s

Sery

@

. , .

. :
where D = BN, is introduced as an abbrev1at10n Thus for small t, the result has

the same form as for the s1mp1e model in terms of the growth, coeffiment A-D.
On the other hand, 1f t, ~ co then the limit of (2) is % -

‘

¢ ,

-~

‘ . A- ANO . ) " ‘
o2, (4) : N~z =—=, ‘.
. . i o B D o ‘ . .
in accord with the remark after (1), ‘that N ‘% represents the long term equilibrium
value.’ - . et
. N t *
r . L } ’
. M a 3
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9. 'Qﬁizze‘s and Nonsénse: Forgetting and Learning.

. .
~ et <

‘ The previous sections also provide a simple modél for forgettmg and leammg, )

.at least of unconnected chains of nonsense syllables invented by psythologists for

~test purposes. Thus (as proposed by Von Foerster) we consider
- . ) 7

- . l \dN

(1) | d = AN ¢ BN, -N), T N(O) = N,

where N is the initial numbeér of items memorized (dates, telephone numbers, un-

connected theorems etc.), A isa foi‘getting coefficient, and BI% is a memorization

coefflclent The notion behind (1) is that your head is originally fllled with No

)
"carrlers" of mformatlon* some (AN) carrlers _]llSt lose their information forever;
‘some (BN) lose informat$n in the sense that they pass information on to the empty

Ny - N carriers. e T .

.

. . . \ -
- Integrating (1) hy partial fractions, or'by comparison with (7:1) and (7:2) (the _
present (1) is (7:2) with a new growth coefflclent BN, - A), we writa the .solution of

(1) * | ‘ ‘ ‘ . \J
N s
- ‘.

S N(t D - A ~ L
(@ > Ny . _D-2 _ . "p-ngs. . :
.( ) No “D - Ae(D-A)t ] 0 o .

.The limit of Nﬁ(oﬁ) for t ~ «, the remembrance R (as defined by Von Foerster) de-
>~ . — S

«

wpends critically on the magnitude of g If D > A then R C‘L

< 1

S | . D-A_ . 1 (D

(3) R = A 1l - m ' x> 1r.

- Rs - -
_On the other hand, if D £ A, then 4 . .
. D '

4) R = 0, T = 1)

_j - 1o > Y. a (A . -
- . ; .

Thus the remembrance of things past is zero for g = 1, and then fncreases towards
) , D . . { - . s t
unity as 3 Increases from unity. ﬁ* . hot

Y
.10. Chemlcal Reactlons Multicomponent Processes

Suppose we have a chemical substance with Lmtlal concentration C’ (gram-
molecules per unit volume) wluch is reactmg in time with something unimportant and

o ,plentlful to form another substance with concentratlon N(t) . The rate of change of
N is proportlonal to the concentratxon of the original substance at time t, i.e., to }

" C - N{t): . “y . o "?’, -
o (D) dN ZAac-N, N@© =0, . Ce

dt

. Fd . Lot ‘ f

o 29 36' I ;
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Equatlon (1), which is known as the law of mass action, 1s essentlally the special

" case of (572) for Ay muck’ smaller than Ay ; by mspectlon of (5: 3) the solution (i.e.,

the concentratlon' offthe solutlon) is ' = ’ -,
? - ¥

. - S oy . . .

@ . - N v N=ca-et. S

-~ ..y ’$
. .- .
EquwalentIy, Etﬂtloﬁ (1) isa sh1fted version of the simplest decay equatlon (3:1);
substituting M = C - N in (1), we obtain , < )

. ) 4 . el - ‘ v ’
" ) 5%': -AM, M(O) =C - N(oﬁ; c, - /¢
which leads directly to (@ for.N=C - M, o
P ‘ . .
Frdm (2), we see that it = 0, then N = 0;if t ~ oo, then N ~‘fC so that all of

LS

the original substance eventually reacts. We may isolate A in the form

-
s

C

: _1
@ C AetlesTwg

8
.

which i8 used in chémistry courses to determing A by measuring C, N, and . B

Ina bxmolecular reaction we have two different substances with 1mt1al concem— ,
trations C, and C,y whlch react at a rate determined by A ito prbduee a third sub-

‘stancerwhose concentratlon is N{t):

*

dN 0 : *

>
vy
w_

.

( The case C; = C; = C may be obtamed from the limit of (6) as Cy approaches‘
Cy. Equivalently, we start with

. ¢ -
-
. . s
~ p) [ ‘130 - !
E e ” s
“or ..
- - P - - 3 s Tl R gme mie o wwwt
N H 7 jorte—— q ¥ ERE7 T Y
. ﬁ,. ¥ B *
- . . , T St

s

ﬂ‘) d dt = A(Ci " N) (CZ = 'N) » N(O) =
This is just another varlatmn of the loglstlcs equatmn (8:1). The solution can be, .
obtained from the previOus ones, or directly i /
e R | 1 1 1 C/-N _ '
e, -N)Lc,-c2 f[c2 o -N]szc,-czhgcz-N:A“K’
where . ,af“,ga.\-,.,.,u))« « » j" :\;
{ .
. . . . K = log Cf/Cz . , . i
‘ , Co-C . . v
ollows from N =0 att = 0. Thus ’ . .
‘ . . Cyey -y :
* 1 2\~
5) . . . A = =< lo , -
g (,), : S t(C, -Gy 8 T(C, N N). A PR
" @nd . . o ' L -
. ’(Clhcz)At - A T e
. . ‘ y . :
LI - N=Cq ., .
_ <) 1-(0‘/0)( )3 . ,




and integ/'ate: ] . B g

' s .-]‘&_ = —_————
/ . @ - N G"',N T
, :
« The constant equals K = -é , @nd therefore*- N ‘:, Yo <
, e ‘“ l* : _ . . s 5
- O ¢ Nc;N C2At’ ~ A

s @AY %gzﬁ'~ TrCA" T L _
The equatiori for opposing 1 n}glecular and bimolecular reactions has the form .
! . PR

o W .ac-m - Be, mm=m ‘ "": .

N
..... “ , :

[

We do not discuss this case but merely reduce it to a prev1ous form Thus we
p . .

——~  -introduce ¢ o S , o
e . 4 - , . ' Q . ’Q
D ~ - 1 +K 1-K* CB 4 .
. (10) Di = - Zh-B— ’ Dz = -—__B_ , K =,/1+4= A .
"TA - A - .

fay Y N 5o, - 9@, - N, D | -

_a

7 jiin.order.to rewrite (9) as | ° -~ . —_—

i

s " We now have the form (4) with the previous A, C, G repIaced by -B, Dy, Dy, and"’
the corresponding;esuits may be written down by mspection. . \
4

/,’ We could go'pn to higher-order reactions of the f6rm T e
T . dN . ~a ~ ,,':' y . e
(12)’ T . . \-(F = (Ci - N)(C2 - N)(Q3 - N) ooy ]
> e I P . P . . P ‘- R )
but we must finish the story., - . \
) L , w0 - - »
/ B " 11.-Sociology: The-End. . . A ° ‘ , ,
a . v ar . v

l . Now we could rehash everything. ' We could change the names of the characters
“in the previous-equgtions and talk about profounq sociolog'ical problems Instead we »
introduce a more general model for the growth of popuIations one which’ includes .
practically a11 of our pre /ous equations as special cases, and‘scarcely talk at all

-In Section 8 the growth of a popul’ation of N individuals was described by

~

,

[

::,*(1) . F = AN - BN, N(0)=No: L '

~,
- Jn

~ .

S N

whére A is the growth coef&icient, and’ B is the hraking coéfficient Let uskiow - >

introduce more structure We may write A = « "- - B, where o is the birthicoeffi-

cient (the birth rate per individual) and. wherq B is one of two death coefficients. ' =
RS




]
1[;

> g
1

7 Tve assume that the population is ‘confined t%,'ﬁn area S, then wé may ’%vrite the

other tieath coéfficient as g_‘ i.e., the death rate p¥x.individual %l\l , increases as Saw

.

_ degreases or as N increases (no room to live), Thus the total death rate is

B+ _gﬁ N. Using By instead of B (merely for esthetic reasons) we rewrite
S ,S . b . o . ‘ i

> . ~

"(1) as g . .-

[enr-oroa- . . f . -

ey o dN

- . - . H

A more general model (considered by Rashevsky) is that for the,growth of a
‘population cionsistmg of two types of mdividuals with d erent birth and death - ¢
4 e .
. characteristics The total populatmn is ; 3 oA v .

-

(3) A : N=N +N,,

and N, and Ny are specified‘by the simultaneous equations

T . dN

q T 0111“_‘1 + apNy - [31 + v (N '+.Nz)]N1, IR R
' () ’ ~c P T o
s dN, .
q T onlNp +oomNp - [Bz + o (Ny erz)] Ny,

where the o's, B's and y's are all constants. The térms proportional to @ repre-
sent the contributjons’of the two groups to the birthrrates- the death rates that depend
on vy (with i = 1 or 2) depend not only on N. , but also- on the total population

) Ny + Ny =N, The system of Equations (4) generalizes practxcally all the other

.

equations considered previously inr this chapter. L. o ;

We do nothing With (4), butas a set of exercises you could obtain all the prz'%—

$

V10us equations that we considered and that follow from 4) under suitable restrictions.

« Talk about active ‘individuals and passive individuals; talk about active and passive
d1sobedxence talk about social aggpegates freedom, crime, war, propaganda etc,. -
Write a book about it and cal] it War ang:FPeace -

- P »
-

’ ’ -

. W'hat have we tried to illustrate with th1s chapter? As you apply mathematics to
wf.he various sciences, you soon discover that at a fundamental level there appear to be
- only a few different kinds of processes going on: the same mathematical structure
arises agam, and again in different contexts of nature. We have seen that the equa-
‘tions are the same, and only the names of the functions and variables change from |
science to science. The stages and settings are very different and the overall plots
' vary, but the subplots are routine, the actors go through the same motions, and only
. the names of the characters are changed. o .
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* 7 GEOMETRICAL OPTICS AND WAVES ' | .
R ’ . N . . N

Q@

1, Introduction.

. < .
There can be wonder and excitement in following a thread of mathematics through

several sciences and recognizing their kinship in the concepts they share. There can
be deeper wonder and greater excitement in following a single scientific thread through
) ~

. o, a
e - 1. H

Iet us start from'"la¥3s of nature" that were iSolated only after long years of , %
TS

the cumulatwe concepts that trace its evolutlon

observatlon, speculation, and venflcatlon, and show how various methods of éalculus
supplement each other in revealing the consequences implicit in these laws. The
partlcular laws are limited in their‘omains of applicabidity in nature, and coz respond

to suitably regtricted classes of observatlons As we progress, along the scidntific o

thread, we'trace part of the development from the early very speolal laws of geom
rical optics to the modern” very general laws that constitute the mathematical model

for wave theorz. We use optital terminology (light rays, m1rrors, etc.) but the }con-

cepts we consider are,bas1c to hght sound and all wave phys1cs ¢ -

. We start with,y*ery restrictive laws, weaken them, and thereby enlarge the domain

of the sub;ect The_procedure we follow is "quasi-axioma ic. " The "laws" or "axioms" \
we list contain undefined terms as well as implicit restrictions on both the observa-
tional and computatxonal procedures that are assocxated withathem. (The'?ﬁﬁvms of a .

¥ NS
mathen}atical system !lso contain undefmed terms, and are also usually tatedjin an; ;

imphci context, but the s1tuat10n is more obvmus in science ) . . r ’ i
, “;e follow a thread that suggests the heunstlc search for first pr1nc1ples on the =
basxs of ljmlted inittal data, and the testing of pr1nc1ples by the new data they predlct '
yVe show tiat sclence like mathematics is cumulative. £asic concepts hever d1e but
are exhibited differently at different evolutionary stages, ‘A two thousand year old
concept that was once accepted as a law — an axiom for a deductive development ~is
.now a speclalgrestrlcted consequence of today's set of axioms. The concept hves not’

only W1thm the new laws and as an mtuxtive gulde for their exploratlon, but it still has’ -

}‘,
a llfe of its own within an appropnately restricted domain — a doma.in whose boundary ’
o> - vk
isstoday determined analytically by the new laws, instead of emplrically. .
; 35, : '
‘ . - e ) '_‘4' l N K ™ . %
/r .‘A‘/ - KN ," - . .iv’. . . IA. . N
D e B 3 ‘ g? . i 2 2 ek
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We do not attempt to define "hght " anymore thmnuld Qttempt t;; defme "L
L is for light, L is for hfe L is for laugh, L is part of the ABC of communicating by
symbols that represents perhaps man's most profbund abstraction. Light is part of ,
the-ABC of physics. '

.

We define neither light, nor Qs varxous subjective attributes: weata'é with "let
there be hght " and introduce varxous mathematical constructs that delmeate certain
measurable propertxes we agsociate with light.."We are aware that you are readmg
with the aid of light, and that although this page is at present practically fully 1llum1—
nated, you can change thé sxtuatxon by closing the book's You have seen landscapes by
sunlight with no trace of structure to tﬁe flood of illumination, but you have also seen

; ..M" f

dancing spots of light traced by shafts of sunlight on a tree-shaded path, and beams of
light entering darkened rooms through narrow cracks‘of slightly open acors; or you
may have become aware of straight li_x_le/' characteristics revealed in floods of sunlight
- by the shadows that they cast. You have handled light sources such as electric lights,
flashhghts candles, and have seen the stars as distant sources of light. You have
seen ‘the image of your face in a mirror, and the fractured appearance of things (fm-

-

Y gers; silverware, etc.) partially submerged in water.
\ [y

"The most primitive ‘constructs Eo”r suéh situations are geometrical, and they were
R introduced by the geometer Euclid (about 300 years before the current era). Euclid

represented light as something ”propagatmg" (travelmg) along "'rays’ (straight lines)
. and as being "reflec;ed" (thrown back ina spec1a1 way) when it encountered a mirror.

A geometry of rays and th? 1dea that light travels at dx’fferent speedsc}n different trans-
parent materials Serve a1so to accoupt for the "refractxon” (breaking or bendmg) of a "

.

ray passing from say, air to water ’ ~
3

Why introduce the idea of traveling? The candle that ies\ consumed as it gives forth
lxght and the monthl)y electric bill make clear that something } 1s bemg used up to pro-
v1de the light. We transform- energy from some other form to the form associated with
hgl?t and the rays we consxder are gtudes for the flow of énergy . N .

! e I
t !
In the ‘next two Sections we use the calculps only to consider the geometry of -

v

. rays — mostly straxght rays but also some curved ones; {nostly familiar effects but
" not necessarxly familiar mterpretatxons we introduce a signed ray {a ""shadow form-
.ing ray") to account for shadows and some of the rays may split into many ("'diffractjon'")
. to descrxbe some aspects of yvhat occurs when light strxkes a %sharp edge. Sections 2
: and 3 deal w1th geometry, 80 that we need not mentlon energy7 flow until we associate a
., magnitude w1th a ray (as we do in Sect;xon 4). However, for the sake of the physical
content, 1t)shou1d41ways be kept in mind that these'rays, in some sense, are the direc-
tions for energy flow In what sense is.energy flowcassoci’;.ted with light? We. do not

answer this, but merer provide an analogy that 1s appropriate for most aspects of
§

N )*
| .

i

s v1s1ble phenomena. .
L n

v
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There are two familiar ways in which energy travels: if you and a friend are in a
swimming pool and you splash him, you shower him with water drops, each drop carry-
ing some amount of energy fx"om you to him, alternatively, if you plunge your hand into
the water, mu;:h of the energy of the effort tra\zels to him via a wave on the water's

- ‘\6{110:' As another pair of examples, you can attract his attentxon with énergy in a
pac

ed form by throwing a ball at hxm, or you can reach him thh energy traveling

as a sound wave by shouting at him. ; . s,

Simple observaiion‘s on pfopagation reflection, refraction, and scattering of beams
of light can be interpreted either as energy traveling as a stream of particles or as a
collimated wave; the rays (Sections 2, 3, 4, 7) are either the trajectories for the partx-
cles, or the normals to the wave fronts (Section.5). For the more complex phenomena
that we may observe réadily, only the wave ihterpretation is adequate: these involve
,"interférence" of light beams (Sections 6, 8, 9). Two boams of light may intersect and
produce additive effects il the region of intersection but then emerge from this region
unaltered in form:' streams of wz;\'es show this characteristic, but streams of particles
do not in general (i.e., some particles end up going in other djpections than the original
ones). For stx]{ more complex phenomena, some aspects argescrlbed more sxmply
by a wave analog and others.by a partxcle analog: Which is light? Wave or particle ?
Neither. Light is Jight. However, since we are more familiar with particles and waves

{practically the A and the B of the AQC of physics) we may exploit thése better known
entities in learning and teaching about light. :

v ~
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2. Geometrical Optics. -
~ AV
- +2.1 Euclid's Principles. -
Early observations of light sources (sin, star, lamps) and of the reflections of °
such sources and.objects.in smooth surfaces (water, polished metal) suggested that ~
many phenomena could be described in terms of two "laws" of nature. We call these >
Euclid's principles of propagation [E1] and of reflection [E2]: al .
I [E1]: " light travels along straight lines (rays); : : -
14 ! ) ) '
[E2]):-~when a ray is incident on & smooth'plane surface, the incident
, " ’ S -
ray, the reflected ray, and the normal to thessurface all lie in 2
B the same plane, and the two rays make equal angles on the ° .
. opposite sides of the normal,”*> - N . T .
Figure 2-1(a) illustrate§ (E2]; it shows the Plane of incidence in which a ray “4 -
from a source (S) reaches the observatian point (P) via reflection at the intersection .
point (I) on the mirror; the rays are at angles o with the surface normal ). In’
Figure 2-1(b), we see that the reflected ray (I to P) is the extension of the mirror
image (' to I) of the incident ray (S to I). . -
: ]
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Fiéureﬁ 2(a), the corresponding set of reflected rays appear to originate from
image source S' as in F1g'ure 2-2(b). Thus as far as the reflected set of rays ",

IS

@éﬂected ray system) is concerned, we may replace the mlrror in Figure 2- 2(b) by ’

theé source S' and reduce a reflec{lon problem specified by [ E2] to a propagation
problem specified by {E1]. (This image method was essgnt1a11y introduced by Heron
or Hero several hundred years a.fter Euclid.) v .

We regard [E1l} as deﬁnmg geometrical propagation m a umform medium, and
[E2] as defmmg geonnetrlcal reflection from smooth planes These cover the s1tua-

tions 'of Figure 2-1 and 2-2 as well as more comphcated reflJectmn prol)lems. .

FIGURE 2-2

A set of parallel rays incident on a planar reflector as in Figure 2-3(a) is re-
flected as a set of parallel rays. If we regard this reflector as co'nsistiné of two hinged
planes, and swing onef%gway from the source as in Figure 2-3(b), then the reflected rays
are said to diverge; if 1nstead we swing the plane towards the source, then the re-
flected rays converge as in Figure 2-3(c). In Figure 2-3(c), the ‘reflected rays inter-
sect, while in Figure 2-3(b), their extensions ""behind" the mirrors intersect; the first
(c) is called a real intersection, and the se.cond' (b) is called a virtual intersectidn. In

e1ther case, the reflected rays appear to originate at the intersection.

-

If we have a set of rays incident on a complex reflector consisting of many planar
portions, then we can determme the reflected set by applynyg [E2] Equ1valently/, once
we have determmed the mtersectmns ‘(real or virtual) of the set of reflected rays we
have reduced the’ problem to dne, specified by [E1], It is of particular interest to '
determme the rptersectmns of rays reflected from curved mirrors, But before we

cons1der curved m1rrors we introduce a more general law of nature than [ E1]

¢
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p .. FIGURE 2-3
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2.2 Hero's Principle. ' ¢ ‘

Euclid's principles describe the essentials of many directly observable phenomeéna
(and also suggest applications not found freely in nature). However, the principles are
very restrictive, and their description is very wo’rdy The restriction to plane mirrors

is removed and the description is compressed by the more general pr1nc1p1e of Hero:
. 1’3‘"‘

(HI:  a ray follows the shortest path between points. !

X Before applying [H] to more genera.l su:uatlon; than covered by [E], we use the i ’
caltulus to show that | E] follows from [H]. Since, by defm1t10n, a straight line is the
shortest path between points we see that [H] covers [El] directly. Similarly in con-
sidering [E2] we need not discuss wriggly paths We cons1der Figtre 2-4(a), and see}; \
" the shortest path between S and P via a pomt J on the surface of the m1rror. f‘rom s
the start wiktake J in the plane-through S and P that is perpendicular to the mrror
any d1splacement of J perpendicular to thls plane will clearly lengthen the component
paths L; 'and Ly, We introduce the lengths and angles of Figure 2-4(b) and seek the ‘
smallest valueof L =L, + Lz (as required by [H ]) and show that this co‘rresponds to
Y =« (as required By [E2]). : f ) : ” '

In order for ' ! W . } ” o~

‘ ™

. - R f (o .}
(1) ‘ L\=L,+Lz.=\/h2+x2‘+,\/l!2+(d-x)z
oo o

v¢;,,/1if._‘-4
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Thus " . ‘ . ‘
o ,
< 4L _ X _ (d - x) X d-x _..°*

VR Ve d-x 0 T I

and consequently sin y = sin & as in [E2]. on

Equation (2) by itself states only that L is an extremum, or equivalently that the
; !

ray path'is stationary for first érder variations of L. l-gever, sinée

2 2 - 2 - A \
dL=cosa+cos1>0’ 3
- dx? L1 :

.
.

we see‘that L is in fact a minimum. '(Of course Hero did not use the calculus: he used
the image principle and geometry to show that vy = corresponds to the shortest path. )

. ‘h It is clear from the above that applymg [H] to reﬂection from a point ona curved ,
surface is equivalent to usmg [5:2] for reﬂection fr}om the tangent plane at the point
(and practical apphcations prio;' and subsequent to [H].have been based on [EZ] plus
the "ta.ngent plane approximatiolg') Figure 2-5(a) shows reflection of a ray from a .
point oh the coneave side of a reﬂector, and ‘Figure 2—5(b) shows the correspondmg PR
reﬂectxon from“’th’" convex sxde note the relations of the directions. Similarly for a )
set of rays gncident on a curved mirron, we can construct the reflgcted set (or equiva- ) l
lently, theix 1ntersections) by geometry; note that both s1tuations m Figures 2- §(c) and
. (d). give rise to the same intersection pomt (real for ¢ and virtual for d); ' . Coe

There a¢re reﬂection s1tuations that are not covered by (H] but are covered by '

Te A e g
T = 0w

[E2] and the tangent plane approximation For example, if we cons1der a source (S)

RS
,,.gpnthé circumference of a c1rcle and a diametrically opposed observation point ®), <o

Sy s




‘FIGURE 2-5 '

>

then tile gegxrfetrically' reflected ray from S to P via a point I on the circumference
. as in Figure 2-6(a), is the 1 ong' est of all such paths (as is clear geometrically). For:
an arbitrary point on'the c1rcumference, we may write SI=SP cosf and PI& SP sing,
sothat L = SP (cos 0 ¢+ sin@), and (2) in the form g% = SP (-8in@ + cosf) =0 gives
g {- = % T as in the flgure but for thts case

. *
.

t Y . ‘

K . °

. dzL - . - T o : . 4 .
- Q07 -SP (cosq +sm9) = -2SP cos 1 <0, ‘ -

%

a o * ¢

. " so'that'L is a ma.ximuﬁ) There are also situatians of interest covered bys(2) for
which the second derivatlves vanish. For all sugh cases, independently of the second

.




\ . derwatwe the first derivative of the path length is zero, i. e the ray path is statxonalg
for first order variations. To cover all such sxtuatxons we replace [H] by the more ‘

* general prmcxple

ey
» r

[H'): a ray follows a statxona.ry pattr,{, . . L

We may distingdish two clasées of curved reflectors and 1llustrate the essentials

for the case of a concave cylmdrxcal mirror. The simpler clags corresponds to a it
"small aperture” mirror as m%‘xgul;e 2-6(b); for this case the semi-aperture of the .

<

SV

‘FIGURE 2-6(b)~ -

2 . «,

>

. * mirror AB/2 is very small compared tp J&S radius of curvature a. If I is the center
point on the mirror, and S and P lieon the mirror's normal at I, then from‘the law
of reflection, it follows that to a first approximation the rays from S reflected at all
M ¢ A R . ,
points of the mirror go through the point P such that

' ) 1.1
. . ST + T

P

-
- ‘. . 5 .
.. .
., . - 2
+ - P . '

“Thug for the small-aperture mirrop all reflected rays intersect at -;- (the fgclus).
A= ~ R
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.\The more general problem of ,reflectlon from a mlrror with arbitrary sized aper-
ture 1s illustrated in F,lgure 2-6(d) for a set of rays from a source on the axis of a

. ot
E3
5 . -

w A

Ve N
v

.FIGURE 2-6(d) ! S’ : :
semicircular mirror, Figdire 2-6(b) shows only to the situation in the’kvicinity of the
axis. If we rotate these‘ figlu'es around their ‘symmetry axls the situations correspond °
to reflection from portlons of spherical mirrors. If the distance of the source from
: ] ) the reflector in .Flgure 2-6(d) bécomes infinite (parallel set of rays incident), then the

envelope of the reflected rays (the "locus of mtersectlons of nelghbormg rays) 1s an
ep1cyc101d (to be d1scussed subsequently) the cusp of this curmsat 2

N
.

-

e 4

The envelope of the rays is called a caustlc we may deal with a caustlé surface, ) .
a caustic line} or a caustic point; the last is_ a1so called a focus. For specxﬁc sets of* &
: rays incident on specific cur\ﬁi reflectors we could determme the caustics geometrl— n
cally, however a geometr1ca1 procedure is usually too tedious. Instead, we apply the
calculus to a quite general situation, and determme the caustic that speclfies the re- ’
flected f1eld for a parallel set of rays 1nc1dent ona cyhngrlcal .mli'rorr We restrlct
attention to the plane perpendlcular to the eylinder's generator, thath{he problem 1s I
lessentlally two dlmensmnal, and derive the correspoﬁdmg“imecaustw Smee the re- .-;4; e

flected rays are tgngent to the caustic, once werknow the caustlc we speclfy the.. - % - s
"+ reflected field by means of [El] “ R Sl M & . ~

f
"o . " g : »

23 '°Caustics : v o ' Y RS
. _J:, '
We consider a set of rays parallel to the x-axls 1nc1dent ona fwo—dlmensmnal

rnlrror For each 1nc1dent ray, ‘we could detelzmme the correspondmg reflected ray ) f:/
C geometrically Instead as the initial step for a subsequent de,velopment we consider . 66
mx* an observa ion pomt P(x,y) on the same side of the reﬂecto}‘ ag the source, apd apply Y2
[H ]to relate the 1nc1dent ray that str1kes ‘the mirror at I(¢, n) to-the reflected ray ‘
through P; see Flgure 2~7. We could specify the point I and the 'incident ray that
~ strikes it in terms of the parameter of arc length along the curve however it is
mox‘e convenient to use the angle that the incident ray makes w1th the normal at I as

l
1
. 1 ..
. : ! ' -l
- g ‘




FIGURE 2-7

the pargmeter the angle o such that tan a is the slope of N. The length of the inci-
dent ray measured from the y;—gxxls is &; the lenﬁ of the reflected ray from Ito Pis

R =V (E-x2+@n- y)2 and its 1nchnat101it>c:the R-axis is '@, | -

The total length from the y-axis via I to

equals

<

@) - L=¢+R= §+J(§ xR+ (n-y2.

Differentiating, we have Y

(4) L'=¢ + FA t X)l';‘n (n '*2) —§|[1+cos ®]"7I' §in ©
‘ N 7
where the prime 1nd1cates differentiation w1th respect to . Using. [H], essentla.lly as _

for (2), we equate L‘ to zéro to obtain !
’\ .

“~

<

=& _ _sin® _
.o, lﬁ. 77 1+.cos 0

'I'hus from the cha1n ‘rule we have

’

[0 Rl I
i

Since %7? is the sloLe of the tang nt of the reer"tor at the point of inc1dence, 4
is the slope of the normal ﬁ and equals tan a Consequently '

] - i s L.
..5,(7)* o ﬁ : —5- tin 2 =tana,

i

]

frmn which® -

-

j ® ="2a, s

S




. gt .
. ‘ LR v
. 'The equal.kon of the reflected ray a.rlsmg from the ray mc1dent at an angle a w1th ’
. - N is .- ) s ‘
« ¢ N . -
. N ¥ -
e ‘;"n"y=(§-xrtan®=(§-x§{an2a, o .
ks
**which we rewrite as 4 B .
v o) (@) = (- ) tan 2a < (7 - y) - AN
. ’ This specifies the set of reflected rays ‘eo;gespondmg to a set of mc1dent parallel T,
rays. The pa.rameter a describes not only the cur/ve—of tlge reflector [g(a) n(a),l“
© it algo picks out the ray incident at g, 7 and the correspondmg reflected ray (10) that
’ reaches x,y. The point of mtersectlon of two nelghbormg\rays gla) = 0 and
gl + Aa)w 0, corresponding to'a and a + Ac/, is determined by g(a) 0 and
: glo + Aa) - g(a)
A =0+ In the limit Aa — 0, the point of intersedtion of the,rays
falls on the envelope and is Specmed by the simultaneous equations .
an 70" g =0, GAL T
i ) P~ .
Differentiating (10), we obtain .
L . : oo - .
(12) o & =ftanse s+ 2=® :
] L cos2 20 i ~ N -
] o & -
. and with (7) we ehmmate n' ~ e - , .
S L) B
: - 1 2{(¢ - x) .
13) | ' =y (tan 2a + )+ .
e ( )* .79 tan o cos?2a , -
ﬂ"* B .
is- , @
jmce taii 25 an | a+ 1= cos*Za , we reduce (13) to
‘ K 1 - ca ;
7 4 L ge 2 (i§f2&~+me-m)s . .
— T, ierten \,, .. eos‘ 2o a . .
’ ‘ oL AR . % . 14 .
. - Thus Smce (11) requirés g' (a) 0, the x-cobrdiﬂate of the pomt on the envelope is *
. (15) .o o 4+ £'cos Za
- . ‘ Coy T . 2tana °’
" which we may rewrite in various eqhix{alent forms, e.g, - v
‘e ’ v " ’ . . * . v L
. * ‘ 3 ' | LA e
. (16) : , g - L cos2a’. | - _

. ] i
‘7 R » \ . SS

"'\ * We obtam the correspondlng y-coordlnate,by usmg (16) to ehmmate tE-x from (10)
thus g 1’-— cos Zof tan 2 - (9 - y) £ 0, and consequently{ ‘ ¢ ’I
‘ I .
. an C ye=n-Losmze. -
- \ G e ’ - -
Equations (15) and (17) (from whlch we™ could eliminate oz) specify the caustlc

curve the envelope of the reﬂected rays (the locus of the mtersectlons of nelghborxng ';
T, ¢

. » . +
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rays). Given a specific reflector we can use its parametric representation to elimi- e

. - 4
nate { and 7, and thereby determine the caustic explicitly. We illustrate this for two
simple, reflepfors, the parabola and semicircle. < 3

Parabola. We coﬂsix\ier ‘a set of rays incident on the parabola

)

78 4
(18) ' 7% = -4p¢

»

as in Figure 2-8. The parametric equations of the parabola in terms of o, where

\FIGURE 2-8

_ taln_oz is the slope of the normal, are .
. - s . : - ,_1
(19) n = 2ptan o , ¢ = ‘ptan o ,
. .% - . .
and conseduently - )
s v 2 2tan-a °
‘(20) . n = 2 . * g =-p 2 .
. cos?a cos? o

"« Using these expressions for 5 and 7' in (17), we have

P e

L ; .-
o - _ P - _ sin a) .
(21) 3 y =2p tfan o cos? o sin 2¢;,v )Zp\(tan o . ——'cos«a
. 4

* . ~

°

Slmzlarly, we use.the ccfrrespondmg expre§31ons fol; ¢ and g' m (15) to obtam

Ov ;\ ;

(22) x = —p-eaﬂ\q (lztana> (éos 20) M— - (sin? a,+ \c‘osz 'a) = _

N cos? a 2'tan o
\

' * } ‘o ~
" Thus the envelope of the reflected raysis a7 3

<

4 }
(23) P A '
RIS {
2 The focusmg éroperty of the
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parabola accounts for its many applications (as telescope m1rror§ microwave and
sonic 'dishes," etc .} for collecting practically parallel radlatlon (the rays from very
dxsta.nt sources) by reflecting the 1nc1dent rays to a srr;all approprlé'te detector placed
at its focus. Smhlarly, parabolic reflectors are used for the inverse problem of con-
verting the ZLadiation from a source at the focus into a parallel beam of rays.

The above examplé-is practically trivial ip that (23) could have been obtained by.
much simpler procedures than the one we followed. Ig the next exa.mple we follow M
essentlally the same procedirre to obtain a far less obv10us result
Seinicircle. The param%nc equations of a circle of radius a for the problem of
Flgure 2-10 are .

. . P . s . »
(24) » n =asina, £=acos &, .
“ Y

and consequently . . . . ./l o

. . ‘ . - - ) N
(25) of nt= acos «a, A =-agina, .

» R o . [
From (17) we then obtain for the caustic - ‘ Y “
Tg26) g, .'y=as.ina—aicoSa—sl;—z-g-éasin"a,

= 1 |
e ' © FIGURE 2-10¥ j o
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. - R . )
- . ) e . . o
and from (15), S ' T . ‘ i %;:xl‘i? I
N _ ' _asinacos2x _acos a 2y ‘.2
@7 x=acosq- S oyt 5 (1 2 sin ay,
[ A N . N ,
Squarmg\and aflding (26) w27), we obtain ; 3 . L -
T g A ;
@) - L ey =1+8simda=1+ 3(L)s . o
s * - a2 - 3 a 3 i :

* ‘ ~
-

the equation of the epicycloid traced by a point en a circle of radius -Z‘ rolling on the
outside of 4 fixed circle of radiys 32-. . g .

. .
4 ¢
.

The cusp or focal point of the caustic is.at x = 2 ,'y = 0; this correspOnds to
g" = 0, and occurs at @« = 0. The rays incident near the center of the mirror (q ? 0)
are known as paraxial rays of "small.«a/erture" mlrror theory, only these give rise to
reflected rays that’ appear to originate at the cusp & 2 [ For parallel rays incident on

- the parabola, the entire caustic conSIStS of the point focus; sxm1\;xz'ly for a source at

one focus of an ‘elhpse all reﬂected rays go through the other focus (hence the label) ]

Virtual Caustics In the above we consxdered reflection from concave mirrors; for

such cases the reflected rays intersect and the caustics are real in the sense de- ~
s, —_—

fined in Section 2.2. Similarly for incidence on a convex reflectorthe extensions of

the reflected rays behind the reflector intersect on a virtual caustic. The identical ~

~ caustic'curve specifies reflection from either side of the muroWi shows

. ) ) I ]
S FIGURE 2-11 R N ”’j?”ﬁt"‘
the gituation for incidence on a conyex parabolic reflector, and[ Figure 2-12 shows
the ana&ogous situation for a semicirele. Pigure 2 13 show% the geometrical method

of constructing the epicycloidal caustic of the semicircle . .

Sinqe the caustic of Figure 2-13 is the envelope of the set of extended reﬂected
' rays, it is tangent to all members of the family From the fig'ure we see that the dis-~
" tance from the mirror along the ray extension to its point, of tangency with the caustic
equals % cos . [Without the geometrical construction the result follows on subx

zcosa
. w«a

{the tota] ray extension from cylinder surface to x-axis) the
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o, S "' FIGURE2-18 .
. 1 wfm « ‘ ’ 3 ¢ \ ) -® l: .'.'
1) ! s o= a gin®-g ,
. value T‘“LZE m (the length of extension between caustic and x SAis. y|

o \ '.I‘hds nelghborlng reflected~rays of real length R (where_ R is th(e,dlstance from the
gf’» AL mlrror) appear to dlverge from a source (thelr point of intersaction) ata dlstance
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#
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Since the reflected rays arle tangent to the caustic, we mayﬁtreat the caustic as the
evolute (the lpcus of the centers of curvature) of 2s m of curves which are orthog-
onal to the rays. These curves the mvolutes of the caustic, are called the eikonals
or exkonal curves in ray theory; the rad1us of chrvature at a..pomt P on such a curve
‘equals 'R + 3 cos a. Tltzl} rays (the orthogonal trajectomes of thé\e;konal curves) agxe

tangent to the caustic and normal to the eikonals, and thls provides a geomet?lcal con-

struction for the eikonals: they are traceq by the points of a taut string as itjunwinds
from the caustlc . . ’ ‘
Y24 Shagows Cw ' - .
W ‘) In the d1scuss10n of B)if we restr1cted consxderatlon to an observation pomt P,

lying on the same side of the reflector as the source (the "Ft side" of the reflector)
) 1f we drop this restriction, we obtain an add1t10na1 s&lon of L' = 0 with L' as given

s ] »
it (4), i.e., ~ . . . v
. . [y .

-~

- 129) g L'=0 if® :
" whert thergeometry is shown in Figure 2_—i4‘. Thus in addition ge geometrically\ ..

. >
e - S M
S e i ..
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. ‘ AN DARK SPACE ° Y
. . AN v .
‘ . o. . . l . w.‘
s, . A .FIGURE 2’-14 . T,
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/
ﬁlected ray' shown in F/gure 2—7 we-s?ee from L' 0 (1.e from [H']) that the inci-

* dentray also gives r1se to another ray —one. travelmg along the orlgmaf direction of
if¢idence. Were the refléctor ‘absent we would interprat this ray as the incident ray
1tself (i.e. the sxtuation of [El]) However,\we insist on the'presence of the reflector

i and seek a physically slgmflcant mterpretatmn of the rays cdrrespondmgto (29).
B T 3 "7’:7“"?7*~- R T OTFYT e g L L
: When ))e 1nterrupt a broad beam of hgﬂt by a~m1rror we notice essentially two

effects: because of the mirror, there is-not bnly some hghe-observed ina regxon ‘of
space outsge of the or1g1nal beam, t there is aio some hght issmg bem a( I\egxon
of space originally fllled by the beam before we ifiSerted the obstacle. Were we inter-
ested soleLy in the orxgmal heam, then we might sxmply say that sqome of the light has
beé&n "b'ent" from its original d1rect10n (reflected) and let it go at that. 'Howev \
A _order'to ultimately specxfy the full effect of the obstacle analytically, we assign it a

) more posxtbve rofe We say that the incident rays “Mexcite" the.obstacle to produce not
- only the set of reflected rays but also a lset of shadow formmg rays parallel to the ‘

\
’ . »
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-
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- correrondmg to a ray E, 1nc1dent on a reflector as’

.

"missing" incident rays in the dark region of space. It is theséﬁ‘iadow forming rays
that we read into.(29); these must cancel the incident rays on the "dark side" oﬁ the‘
mirror to "create" the geometrlcal shadow (This 1dea of shadqw formmg rays may
be hard to reconcile with mental images of the reﬂection of rays based on a ba11 ~
bouncmg off a wall. However , were we interested in spec1fy1ng the total effect of the
wall in the ball-wall problem& we could also do so in terms of reflected balls and

L3 w oy

shadow forming balls.)’ ) : .

To make the role of the obstruction more exp11c1t (and to set the stage for our
subsequent d1scus51on of scattering), we mtroduce a symbolic representatxon for the
) rays We represent the effect of an 1nc1dent ray by E,, of the geometrlcally reflected
ray by E;, and of the shadow forming ray by E;. wé represent the total effect E,

D
& ’

(30) E, =4Ef‘+ E: . E= ' . :
B . E; in dark space ) T ; -_.ﬁ%

Thus in the lit space the total effect is’ Et = E; + E; as shown by the two rays on the 3
left hand side of Figure 2-14. On the other hand in the.dark space we have E, =
E, + E, correspondmg to the dashed ray on the. right hand sldg;s?f Figure 2-14;in .

Y. { Eg * in lit space

order'that E, represent the physical sxtuatxon of the geometrxcal shadow i.e., jn »-

JRTp— N

. order that E, vanish, wé'require: ~ - . o B

t . g
. .

IV S E, = <E,.

P4 L

N *

We take?él) aé'wt’ supple'mentary assuxhption to [H']: the first soluti’((gl (® = 2a) of
IL'=0 accounts for geometrxcal reflection (and we subsequently determine a magni-
tude to be assxg'ned to such rays) the second solutxon (® ) pLus 31y accoun'ts for

@

"+ shadew formation. - y

L3 b S . -
The symbol E in (30) repreaents the scattered/part of the total effect E, =
E, + E. This is the part of ‘E, that we may regard as originating at the obstacle to

E, or as outgoing from the obstacle. v . ¢

Ifwe consxder a systern of arallel rays 1nc1dent ona convex semlcxrctilan CYs , e -
p %’ =

Y - -

11nder (or equivalently on a full c1rcu1ar cylinder), ‘then the correspondmg scatterea ray
‘system (reﬂected p,lus §hadow forrmng rays) id as sketchedaln Figure 2-15.

Y i

* _The family of curves perpendicular to these rays is the correspondmg mffmte

3y

set of eikonals. Flgure 2-16 plus its reﬂect1on in the x-axis shows several of. these
cnrves These curves may be obta1ned geometricaI‘ly from the caustjcs (the caustic”

for the shadow forming rays is the point at X = -«), or by constructing the normals )
of Figure 2- 15 geometrically, or analytically We consider an analytical der1vatlon

in a £ollowing secﬁon At larger and larger distance: from the scatterer the eikonals .

of Figure 2-16 become more and more circular

\
1 ‘
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FIGURE 2-15

FIGURE 2-16

.. There are ad(ﬁtional sets of rays unpliclt in Hero's prmciple an@elr utility.

'
2.5 Edge Diffracted=Rays

.

or "diffracts" an incident rax) In order fo motivate mtroduclng such rays, let ys
review the prececllng matenal. B

.',

/ -
ot . .
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has been shown by the recent mvestigatlons of J.B. Keller In particular we consider ‘ ‘
“edge dxfxfracted rays arismg when 2 ray is incident on a sharp edge (wh1ch "breaks up'' I

»
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We have discussed reflected raysdand shadow formlng rays, and we saw in con- .
‘nection with the semiéircular cylinder that both kinds of rays were requlred to obtam
a completé coverage of space by scattered rays (or equiyalently to obtdin clased scat-
tered elkonals) However if the scatterer'is a strip as in Figure 2- -17(ay, such rays

v - 3
L . ~

. —>

’
k154
'

*mwr

IRNARARA

: , . FIGU;}: 2-17(a) : , « ,

;X‘Z"" ‘ ot
. R
alone do not cover space, which 1mp11es that the scatterer s influence is restricted to
4 the two d1rectlons shown in the flgure To construct a scattered ray system that covers
all space, we 1ntroduce the edge diffracted rays of Figure 2- 1€(b) these rays are in-

cluded in [H], 1.e., an 1nc1dent ray strlkmg the edge is dlffracted to P via the shortest

path. : oo /‘ ’
/ / - =
. \
- LY
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From Flgurez 17(a) and 2=17(b), we see that there are: essentlally three dlfferent .
cases that arise Tor a fully 111um1nated str1p, these correspond to the three dlfferent
Qbservatlon pomts of Figure 2-17(c) An observatlon point at P, recelves two
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dlff?hcted rays; P, receives one reflected ray and two diffragted rays; Py receives
one shadow formmg ray and two diffracted rays. In a subsequent sectxon we show that
the magmtude (of energy flow) associated Wlth a diffracted ray is in general much
smaller than the magnitude of the other rJays in Figure 2-17(c). If we assufne this
result for present purposes, we neglect the diffracted rays in the regions correspond-
mg to P, and P; and obtain the scattered ray system of Figure 2-17(d); this figure

A

-

FIGURE 2-17(d)

shows only the ”strongest" scattered ray at each observation f)diht A c'orresponding '
eikonal curve normalto the rays of Figure 2- 17(d), is shown in Figure 2=17(e), and it
is clear that such’ surfaces become e more circular with ihcreasing dxstance from. the

scatterer.

-, FIGURE 2-17(e) ./~

"The various ra\.ysﬁ%f re 2-17 correspond only to the sc.attered ray system,
i.e., to the effetts in space arisingr from something that obstructs the incident rays;
this figure does not take mto account that the observatxon point is also reached by an
1nc1dent ray. In partxcular as dxscusséd for equanons (30y and (31), the mcxdent%rays
and shadow-formmg rays cincel in the shadow region corresponding to P3. Thus the
net effect in the shadow ‘region must arise from the edge diffracted rays as in Fig-

ure 2-18; such’ effects have been discussed in detail by J.B. Kelier. (Brxght areas in.,
the shadow region of obstacles with very regular edges were fxrst commented on by

- .

Grimaldi, 1613~ 1663) ' ' . -

O
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* For present purposes, we consider only the caustic of the edge rays for tire anal-
ogous problem of a disc. Thus 1f a parallel set of rays is normally incident on a
circular disc as in “Figure 2-19, each point of the edge gives rise to a "full fan of rays"

yo P - . M

N

—p— .
4 “ ”& N
. )II * -
’ ' . » 2 R *
14 .
\ D‘:a
3 v .
. t “ * ' T
R + FIGIIRE 2_19 ) ., ’ . - '. ".
" I . ”»
- normal {o the edge 4t that pe.glt . An off—ax;s..observatxon point recexves edge rays.. ’

only from two points of the citcumference on the disc,i.e., from theﬂametrxcally

oppos:te points cut by the plane containing the observatxon point and. the disc }s axis.

However, a pomt on‘the axis of the disc receiVes~edge rays from thé ent1re circum-

Fas ference: the axis is.a caustic. of the edge rays.uThus .the centex of the shadow«o£4a ~
;v ‘ no}:mally illuminated circular disc should show a.brxght spot, the Arago bright spot, '

- or Poisson bright spot (as predxcted orxgina.lly about 1800 via a wave argument —a ‘

7 g argumeénty. 7, % "4‘3 e CWET TIAT Ty p TR T I R

. W 4 ’
For the cxrcular dusc the line caustic of the edge rays is the envelope of the / ’
: planes normal to the edge of the dxsc. For a dxsc of general shape (an arbitrary b
planar scatterer) normal to the parallel incident rays the corresponding caustic of
the edge rays is a cyhndrxca.l surface, the envelope of the planes normal to the edge.
1 Since fwo such planes mtersect*in .a line normal to the dxsg, the caustic cylihdrxcal .
surface generated by the hnes of intersection is also normal to the plane of the disc. a

o The cross section of the caustic cylinder cut by the plane of the disc (or as viewed on ,

K3
kX

a screen in the disc's shadow), is the hne envelope of normals to the edge in the plane
3 W of the dxsc,,it is the evolute oftheedge . R ' oA -

P - s ]
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" . T partxcula.r for an elhpﬁc edge |

' . 2 .Y_“
32 = + =1,
( ) . . az y
the equation of the evolute, the four-cusped curve sketched in Figure 2-20, is
2 - 2 .
@3 - . ‘ @x)® + (by)® = (a2 - )3 . . .

L4

a L]

o

Eliminating ¢ from (38), we obt:;in the required result (33). [ Note that }or the geo-
metriéaily reflected rays we started with‘a set of line's’(the rays), determined their
caustic, and then ig]ent;fied the caustic as the evolute for a set of involutes (the eikonal
curves). For the preéent case, however we started with an involute, .(the edge of the

. disc) and determmed the corresponding evolute, the envélope of 1ts normals (the locits

g‘gw the centers of the circles tangent to the mvolute the locus of, the centers of v

~

curvature) ] “ &%

o~ 1 - . - s

' L83 . T

f

}

SN
- N
R ' . FIGURE 2-20 ‘
¢ i
To derive (33i we write a point on the ellipse parametrically as . ) ' N
(34) ¢ =acos¢, .n=Dhsine. \‘j -
The correspondmg normal through X,y is specxf,xed by ’ . ,
. . by ’ b .
. (35 =2 _ _ i p= .
) L BTy e MmO
and the-derivative with respect to ¢ gives f .
s - ¢ - .
. - - b .
36) "~ - . - g = 8X s, W -9, '
89 . . £ cos3¢ sin’ ¢ , L
R P » . . ds tx
Substxtutmg (36) i (35) to ehmmate exther x'or y, we see that
- // .
'(37)’ . ) . 3 ;X_ LT ’ . .
SRR - cos«p~~91n~¢mT~ T e AT,,..@,,_.?T‘._‘ .
Consequently the locus of the normals is ° - b
7 e ’ A ; .
: ' 2 -2 2 .
(38) ;o -t o b cosp, y=2 = 5 b? sindg .




) dorrespands to 'a'Very small cylinder a LN ’ - ) g

.

If we v1sua11ze an experlment in which we start \Vlth a circular disc and gradually
convert it to one of elllptlcal crogs section (or equwalently if we rotate the circular
disc so that it is no longer perpendicular to the mcldent rays), then on a screen nor-
mal to the direction oféincidence.the bright snot changes to the four cusped evolute of.
the ellipse. Such caustic sections were phofographed by Coulson and. Becknell In, 1922.

The associated scale factor: In the above we discussed rays reflected from surfaces

and rays diffracted by edges. The edge rays as in Figure 2-17(b) are drawn radially
outward from a point on the line representlng the edge, buf“the scattered rays of Fig-
ure 2-15 fora the cylinder are not radial. If we visualize the cylinder becoming nar-
rower and narrower we might expect on the basis of our remarks fmdge rays that
in the limit the ray system of Figure 2-15 ccjuld be represented as a set of radial

.

_ lines as in Figure 2-21.

-

T ent

' FIGURE 2-21

-
’

Al

The situations pof both Fi'gures 2-15 and 2-21 are covered by (H'] ,~ and both cor-
respond tdscattering\by a ¢ircular cylinder. In order to distinguish them we must

associate a scale factor for length with a ray. To do so, we could ‘assume that in addi-
tion to the gepmetricé:l property assigned to a ray by [H'} a ray of light (of a single

“color) has an assoc1ated length A that is independent of the. length of the ray

g

path. 'W ’couId then distinguish the two dlfferent scatterlng situations for the cylin-
drical olltacle of Figures 2-15 and 2-21 as follows the ray system. of, Eigure 2-15
corresponds to a very large cylinder a >> X, and the ray system of Figure 2-21

[

The existence of an associated length might ha_vé-been guessed (from Grimaldi's
experiments on light :ﬁfracted into shadow regi()ns) but was not. We show subse-
.. quently tf;at the required scale factor emerges nafurally as part of a more general
model for such phenomena. We mention the mafter now partly in antxcxpatlon, but

primarily to stress that the present model is incomplete.
¢ M -

“
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faces and ised [H| to deteymine the reflected set of rays. We now extend t!f'\devel- -

opment to partially tranere
rays A transmltted ray does n{t lie in general along the extensmn of the correspond- .

ing mc ident ray, but mak prlate angle with the ray extensmn (e.g., as in
Flgure 3-1); this kind of '} re ak' in the ray path is called refraction. J

surfaces and consider in addition a set of transmitted

FIGURE 3-1 . ..

)
Observations and studies of the broken appearance of a rod partially immersed

in water, and of a beam of light traveling partly in air and p'artly in water, go back to —
Euclid and Ptdlemy\(second century of this era) but the complete description of such
-effects was flrst given by Snell (1591-16286). As the approprlate analog of [E] for ’

reflectlon we have Snell's law of refractxon R A
“,,.;.,_,4..“ woamer T ) Te—

LS ‘]: A ray mmdent on the smooth plane intérface between two trans-
parent medla gives rise (in addition to the reflected ray)to a 7 .
refracted ray on the other side of the mterface The mmdent ray,
the refracted ray, and the surface normal lie in the same plane,

Q A ‘ ¥ RREEN T - -
N e - -

-ﬂnd the two rays are on opposite 51des of the normal. “ThE s‘iﬁ" - :

»

* of the angle () that the refracted ray_ makes w1th the normal is
2 ) proportlonal to the sine of the angle (@) of mmden@
[}

’ From {S], we spemfy the direction of the refracted ray by
. 1 ——

Q) - uzsmﬁ =y, sina’, -
# or equivalently by _ . . . ) .

.
>

2) . o q " usinf = sinw . '\

The constants p,, and pz are called the indices of refractlon and p = '—31- is called
the relative index. of refraction.” The situation is shown in Figure 3-1 for u; < py (as

-
s




assumed in all that follows) the ray travels from S to P via a point I on the inter-

face. The u's aré‘physxcal constants which spec1fy the essential physical property .of

' *°  the media for the topic at hand they may be measured experlmentally, and we.assume
they are known. In particular for light (yellow light) passing from air to water we *
‘ By o3 - —
have iy 53 N . ' .

We may apply [S_] to such problems as a point source above or.below an air-
water jnterface. In particular the caustic for the system of refracted rays can be
found by the method of Section 2 If we consider a point source under water (u = %)
and the rays for which sin g8 < % » we can show that the virtual ca&stlc for the rays
reﬁ'acted into air is the evolute of an ellipse, and that the eikonals are parallels of an
elllpse (An obJecf under water, viewed along different directions from above, appears ¢
to lie along the correspondmg rays tangent to this virtual caustic.) -

2 Fermat assumed that in a given medium llght travels with a velocity v inversely
) ¥ proportional to the index of refraction (v = E » where c 1is the vélocity of light in

vacuum) and rewrote (1) as

sin sin C
b sing . sing, :

3 v=—-’ v=_-'
. vy vg 7 S 27 )

LI

He.then derived (3) from vthe following minimum principle called Fermat's Principle: ¢ ,

9 - [F]- A ray‘takes the least time to travel between two points.

T % with i =1,2; from [F] we see that
1
princyple [F} not only replaces the clumsy [S] (the way LH] replaced [};':,k) it also
-mclu&s {H] as'ﬂﬁ special case ‘where v; o vz %d the p‘omts S and P areon the '

same side of the interface, Y . o
13

We now use (F] and the geometry of Figure 3-2 to derive [S], essentially’as we
used [H]} to derlve [E]‘ The time taken to go the distance L, from Sto I at a

N

velocity v, is t, = Ly =L, and, similarly, t, = L'z is the travel-time between I and P .
vy,

RS

) h af, velo_city vz} in medium 2. Thus [F].reqpxre%that Sy s Sl Lo
4 2
(4) Ll o+ _2_ ‘/hl + X2 \/hl + (d X)
K V] V2 ’ Vi V2

be a minimum. Differentiating‘(4) with respect to x and equating thefresult to .

Zero i.e., ' . ‘ : ..
4 . . ; s
_‘ o \ .
. ‘ ’ Yox _ - d-x =sina_31nﬁ=0 N
. b
L wRErR /R ed-omE W % S
\ o .
» ’ * . - ' 4
r ! < T { !
[ 3 -
R 3 . .
. .. % . - '\ .
N » \ ° D T “\ .
o M Ct ! ’ > P ¢
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we obtain (8] in the form (1), (2) or (3): ) - ,
. i * .« .

.

<5y sine = % sinB =ﬁ% sin"B'= jising . — ' g .

~ + Ifp=1,and S and P are both in medium 1, then (5) reduces to [E].
2

Jt is—clear from our diStussion of the replacement of [H] by [H'] in Sectiom2, '
thatwe should also generalize [F] by replacmg le@st time by statlonary time. Equiv-
alently, 1f we define the optical path lengthto be KL, then asﬁle analog of [H'] we ot

*take - i oo ;
, .

. ¥ v x
OO P . T o ok 1-»4“..43.._1 - ¢ ., ———— [ SN S X

° IIF ] : a ray follows the stationary optlcai path between points. .

.

Unlike'[S], we may use [F'] and (5) for refra&iQn at curved interfaces. Thus
we could now consider the refraction analogs of the reflection problems we considered
eviously. For example, we could determme the caustic for the two-dime 19na1 . '
problem of a set~of parallel rays inclffent nose-on along | the axis of a convexge\iclr— ]
cle of . radius a "cappmg" a stri (whe‘re the semrcrrcle-stmp region i characterized T ‘
by u), or the three-dimensional analog of 1nc1dence along the axxs of a hemlspherically
v capped rod. For this case, the caustic of the rays refracted at the semlcircular inter~
face can be obtained by essentially the method ¢f the previous sectjon; the cusp of the
caustlc lies on the axis at a dxstance pa/@-1) from the in'terface, so,that e.g., for
- y.« 4/3 the cusp is at 4a. um],arly we can obtain the caustic for the rays that . ., . ..o«
undergo, two refractions for incxdence ona c1rc1e (or sphere); for this case the cusp
*  isonthe axis at' distance (3u- 2)a/2(u 1) from the first interface, e.f., for p = 4/3, .
the cusp, is at 3a. , (Would there be a sha.dow ? Have yeu ever illuminated a cyllndrical <L

i\lx . °

glass 'of water with a-flashlight?) . i . °
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Rainbow caustxcs Newton (1719) showed that white light could be regarded as made
up of hght of dxfferent colors, each specified by a different value of some physical

parameter (say w), and that in general the relative index of refractlon between two .

media depended on color, p = p(w). Thus a ray of white light incident at an angle o . ‘
) * on an interface may be freated as a set of co?&’der;:\ays different colors (w) each 3 ‘
. being riefracted a different Angle B(w).as detérmined by th:&{r.ejponding ‘index of . . o -

": refraction p(w). Consequently, a single ray of incident white light becomes a fan of

coloreti rays (the spectrum) on i'efractlon, the different colors appearlng at angles. B

determmed by . .
- * . [W.
! . . ) q§ ™ .
: sin o , : :
[ = = - . N
(6y ‘ ., SinB(w) ) .

. & B

For yellow light incident on an axr—water interface we have gy = 3 ; for the colors red

through yellow on to blue, p(w) mcreéses through 3 "and conséquently sin B(Qy) de-

X ' creases from red\o\blue as sketched in F)gure 3.3 ‘ T N \\ *
4 . /‘ . N ' '; 3 -
* 7—’ »
R -
’ ~ .
Ia 3,,‘" A .
N P '
] B
. ¥ e
hd ~ ¢ " .. (h—-u-.-n-l— "
B . ¢ . © e , -
e . FI;;URE 3:8. - A/ -
- ] M g ‘ ] .~
. v " Relation ( (6) is strkagly exhxbxted in the rainbow formed by sunhght incident on B . ‘

B spherxc}ll water drops. In the following we use the methods of calculus to determme .

the' dngles of the primary rainbew and seconda‘r‘rambow for cireular cyhnders and’
\ ) spheres. T

- ¢ Tk .

5 o A ray incident on a transparent circle {such as a cylinder of watef in axr) gives . <
" e nse to.an infinite number of rays. Sogof bhese are shown in Fxgure 3-4; initially
3 we conslder the ray p. If a system of allel rays is 1nc1dent on the cylinder, then

«  we deal with incident rays makmg all angles « (from»O to 90") thh the cylmder s i

. hormal, and to each corresponds a different p(a) . We want to show that in the vtcmxty
. . -, L. A [

>
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of scrme parncular value of the angIe a (say @ s) the mays p(ay) ,wxll have a caustic .
(wxll‘ﬁg“'focused"), or equxvalently that the angle of emergence of P has‘& stati ophry
vajue correspondmg to oz,. e : ]
. . 1 ' 5 T, \ol
C The. prxmary rainbow corresponds to, rays that have undergone Vo refractxons
and one Lnternal reflectxon as shown in Fxgure 3-5,, We now s}row that the angle ¢
(the angle between the emergent ray.and the mcldent ray) has a statronary value Pq
and express z in terms of the relative index u .. S N
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(9) . pecos B d% = cos b,

~
$

o v . A
1’ 'so that (8) and (9) yield ‘

> <
o7 > .y .
(10) .. e ~ pecosp = 2cosa .

Yosa

Thus fronr(10) and (5), we obtain
. . % s

7 R A :
(11) - 3cos?a, = -1,

7 ot

whxch determmes the stationary value o, of the)angleof mc1dence,-and consequently
the correspondmg values of B and (7 In partlcular,

P s
¢ . (ps. - 4 - 2 e
(12) sin 5 “2 1'-—3-"-‘—] .

Fpr yellow hght w) = 4 » and cgnsequently ¢, ~ 42°; for the colors red through
blue the correspondmg values of ¢, decrease through 42° . s

This result for a cylmder also holds for a sphere, and is therefore basic to the
rainbow formed when sunhngmates a region of a1r containing many water drops.
- 14

For one water sphere if the sun is in back of you and yé'f can scc the ray through P
;fj/ gure 3~ 5 me colored rays will be at about. 42° with respeet to the direction of

cidence (in the plane of the sun, the drop, and your head) If the sunlight 1llummates
a largenumber of drops over a very large volume of space then you will see the
familiar rambo\v arc. ) ‘

‘ For the secondary rambow, correspondmg to two internal reflectlons we deal

with the geometry of Figure 3-6,_ We now have-

13)




Differentiating (13), and using 29), and (5), we obtain

(14) ol 80052-“02_.,.'=7p2 -1, - . } '
- ‘ . (O , . P *
and consequently ’
- @, .l 2
(15) sin 2—s g T IS - 2t 183 27
' , 8y’ ) . Y
“* Forp = %—, we haﬁ ‘gosnz 51°. More ‘generally, for n internal reflections, we;have
! ¥ Toe ' . - i - : i
° S ! I3 2 _
(16) cos? d = !L__ll *

?

n@+2) °

Using the fact that u(w) inereases as the colors go from réed to blue, one can describeé
the appearance of the primary and secondary arcs in space and account for the differ-
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- . ent orders of the colors in the two cases. .
," Stratified Medium: If we apply the law of refraction to a ray tiaveling through a set
of parallel slabs as in Figure 3-7, such that €ach slab has a different index of refrac-
tion, we obtain ) )  v— \
SooLoan. . uosin @y = pysin 6 = pysin @ = -+ = constant = ¢ .’
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Similarly for the limiting case of a continuum whose index of refraction is solely a
function of x, we-havg N ' N . 7
. ! o v Tt e M M .
(1’ . p(0) sin6(0) = p(x) sin6(x) = c.
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1 T . ’.
Using 3= tanp = 800 i - C ;

, we obtain . A
\ dx J/1-sin?6 " ° : PR

frozix' which

20) . . . Q}::;_:u

-

4 o ' . - dx <%)2,_- ‘1‘

4

”

v L . - .
Integratmg (20) beﬁveen 0 and x, weobtain oL RF
1 \ . f

r r't

g .
. JURS n‘-:" s \.hj? N _ d . ! -
ey L yenesf =

| -
el s . 0 (2)2 -1
- Yt 3 . - Cc .
- N % A a
1 -

wstaﬁ a 0 ¥o and arrive at x, y

As an illustration, we assume

(@2)

‘v : .
where b is an assigned para.meter To evaluate the mtegral (2 1) in terms of (22), we

change the variable to ¢, such that - /

@) . \ c(l + bE) = sing,
. . » LR
and rewrite (21) as '

o 1 fs’l‘n i(1+ bx)i 4 e . ~n
Y=Y = 7 1 sing ¢, . .
: . b Jgin¥g &

Thus_on integration, we obtain ) ‘ /
v . .' s . . . ) . "l

1] Vi-¢F,. 1 S .

@) , [" ¥ E] #[y 30+ ob ] R SR

-

-

-i.e., the equatlon of a circleof radlus 1 whose center is-located at ©
ch e .
‘1 .3[1-02 wooT - :
“p Yo cb N .
Rotating the coordmate frame of Fxg'ure 3-7 (for convenience in the. following

application to rays in the atmosphere), we show ray paths {n Figure 3-8 for (25) with

b<0 andmﬁ%b>0 o - . o “1,'
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bug The aBove results serve to account for mirages. Normally the density-of the
e A -
atmdspﬁere decweases gradually with increasing altitude; the index p, which depends
prmrarxly on the density, alse decreases gradually. However, over a cold extended
o . surface the density and p may decrease rapidly with height. An object on the surface
¢ may then he.seen at large distances by meaxjs of down-curving rays as in Figure 3-9
+
‘\\ a\p
P .
. Hx . FIGURE 8-9 =~ . . s .
Sy I : : o
. ' N N - : . L - ‘ o

Jpe )
(in which the culwature is greatly exaggerated) The eye..ggghts along the angle of fhe
ray's arrival, and one imaginhes that the ship lies along the line-cf-sight Ona much

! » larger scale and with normal decreade oﬁ p with alhtude, Figure 8-9 accounts for }

- . our seeing the sun by refractmn after- 1t _!?‘s,,,passed below theghormon : i
ﬂ_ : A more common mlrage occurs over a hot extended surface when the dens1ty and

,e . ' p, first increase and theqdecrease w1th Aincreasing heigh{. For such cases‘the eye R

may see the object by an upcurving ray as well as by a straight ray as in Figure 3- 10
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(in which the curvature is again greatly exaggerated')_.’ In this situation the eye sees
myrror images; since this is reminiscent of reflection on water, one also infagines

t  that a water surface is present. .

.




i
- . . N

A
s WO

4, Kepler- Lambert Principle. .

In Section 2, we assumed }{ero'&prmclple [H‘] that the Tay path be statlonary, ’
and used the calculus to revea) some of the 1mp£1c1t physics. Lxcept for the discus-
s;on of sl>adows we did not associate a magnitude with the rays. We now do ss, and
then supplement [H'] w1th an energy principle or flux pr1nc1ple We introduce a flux
density F = IFl asa measure of the energy flow per ‘second through unit grea nor-
1R the flux

mal to a ray; indicating the direction of a ray by a unit vector R, we call
vector, * . . . ,

Kepler in 1604 (by a mixture of mystlclsm, ms1ght and sorhe observatlons of

lrght sources) proposed the 1nverse square law for the flux density associated with a

source of light, He argued essentlally as follows If a steady source (one not varying
with time) is em1tt1ng rays umférmly in all dlrectlons then the total associated flu.x
(total energy per second) passmg through any spherical surface centered on the sohrce
(gws’ in Flgm'e 4&1) is a constant, then, since the surface of a sphere increases aslthe‘

. ..o_ ‘ )
‘ s = bk e . . o T
Q l . ’ , . . . is. K
. ,_ FIGURE 4-1 . — . mx

square of its radius R, the flux density F must be proportlonal to L (V1suahze
Rz o -

the source as something like a steady omnidirectional water faucet.) Equlvalently. S

. A

since - <A .
@ . . JRR)S = FR)JdS = F4rR? = - C,.a constant ,
it follows that . L. o L
. . L . . r, . . o
. ! c - Joo=
2) .- =L, . .
@ . FR) = ope . :

‘,37'"

i Lambert (1760) generalized (1) by taking the pomponent of the flux vector- F'ﬁ
‘normal to a surface as the measure ¢f the energy flow. Thus if S is any surface en-
- closmg any steady source, and if N 1s the outward unit normal on S then from™ the

work of Kepler and Lambert it follows that: . ] . ;

"[KL]: 'fS FR t\NdS = fS F cos 6dS = constant = C,

“where 6 1s the angle, between the ray direetion R and the surface noi'n‘lal R asin

w r

Figure 4-2, : - e

Aruitoxt provided by Eic
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. Equatxon (1) is the special case of [KL] cor;‘espondmg to a uniform pomt’ source,
at the center of a sphere; for this case- F depends only on R, and R is parallel to R.
If we take the constant in (1) to equal umty, then the correspdndmg form of (2) is the
. flux density for a unit point source: . -7
. id 1 .
G . TR& oo,

Equation (3) corresponds to uniform radiation in three-dimensions. -y

We may also apply [KL] to determine e flux dénsity fort)a unit source radiating
’
* ¢ unjform m only tyo dimensions, i.e., to obtain F(R) for a unit line source Thus we
K conSId an exfended source along the z-axis emitting rays umformly in perpendxcular

' xy-pla es as i Fxgure 4-3. We apply [KL] fqr C 1, and S emxal to a coaxial
. L3
2 i ¥
. h . z . . —
. 'S ) .
* . . . e )
) - - ’ - 3 .
. o . . : & 4 % oL o, -
1 (X3 - A . ‘ " b . ‘ :

o
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rlght cn:'cular cylinder havmg unit length alopf z and radius R as in Figure 44,




FIGURE 4-4

. s o
.The [KL} integral vanishes over the flat caps of the cylinders at z = £1/2; fgg these
pigces we see that ﬁ;is perpendicular to N = £2 (whe_reé is the unit vector 5-), and
-consequently ﬁ N =4R - 2 = 0. We are thus left thh the 1ntegral over thé cxrcu-
lar wall (of helght umty and radius R), for which Q_\N Rer R= Rl

“

-.f‘v‘ A
@) . y-fas=F-1.2m =1, - ;

where we took C = 1 to corrgspond 1o a unié source.' Thus from (4),
Voo , - 2 ! S

FR) = 5oz

®) « R

. -

-

is ﬁ.ﬂux density for unit length of umt hnbsouree

imilaply a planat source is defmed as an mfuute,plane (say zy) emxttmg
rays.perpendicularly along R = tx For this case we take S as 4 right cylinder
.as in Figure 4-5, with faces of umt area parallel to the source (and "enclosxng" it).
Since R - N vamshes except over these umt faces [KL] for C = 1 gives

@) =i ‘FfdS=F

and consequently

oM

@

is the flux denSxty for unit area of source.

It should be -kept 1n mm‘ii”that all the above équations are very specxal cases of
[KL] In general FR is a function of all eoordinates, and [KE] applies for any
closed surface ‘enclosing any ntimber of steady sources.

a?
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From [KL} it also folIows that the intégral over a surface S, that does not .
. o -
’ enclose any sources must vanish: » - R
o N , . . ’ n .
e ®- - - . fs RNdS =0, - vo )
. - - s
. i.e:; the constant in [KL] is zere for a source-free region. (The source is outsxde the
g N
. closed surface s0. that whatever flows in through part of S, flows out through ancther
* part ) We use thxs to defme a pencil of rays (a narrow jcone of rays) analytxcallf
i Consider the capped tubular surface S, of Figure 4-6 which enclogses a-set of
. - ) . et s
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! rays. The curved surface S, is generated by the rays pa&sipg through the boundary IR
curve of Sy, and the entrance and exxt faces S; and S, are taken perpendxcular to the R
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- integral over S. vanishes and we are left with

E

s

" a closely f1ttmg tube enclosing such a set would narrow down to 8, = 0; for such cases .

mal to the_ faces, we see that S, and S, have the same center of curvature, Thus N

/);vhwh speclfles the variation of the flux dénsxty Cvxth dxstance along ‘rays.

RIC

e,

¥

P

) ’
v

.

-
’

rays, i.e., the fages are pietes of the eikonal surfaces discussed in Section 2. Thus
if ﬂc, ﬂl, and Nz are the normals to S., Sy, and S,, respectively, then R-N.=o0,

R- N; = -1+, and R ﬁz = 1, Applying (8)to S, = S, + S; + S, we see that the

<

(©) Js, Fas = [, FdS ,
where the mtegra;s are over the entrance and exit faces of the tube. In general F

varles from point to pomt on each face However except for spec1al situations, we

can take the fates small enough S0 that the variation of F over each 1skneg11g1b1e,
and approximate (9) by v ) v

8

(10) * FySy = F\S,.

>

. .

The set of rays for which (10) holds is defi‘ned as a pencil of rays; the set s ¢ encloséd

by a tube whose faces are portlons of e1konals~ In der1v1ng (10), the ’ spemal" situa-
g &

tions which we excluded are those where a face comcxdes mth a focus, or caustic. As

discussed in Sectlpn 2, a focus corresponds to the intersection of many rays, so that

(10) is not a valid relatlon for F. However, such cases are still covered by (8) pro-

-
=

vided S, does not 1ntersect the caustic.
Ty

.
4 p—
4 ——

Let us apply (10) to the essentially two-dimensional problems of reflection from a —

cylinder with generator along z discussed previously in Section 2. Dropping the un- ~

essentlal z-coordinate (i.e., takingall penclls as having W height along z), we treat A

S of (10) as a small arc length equal to the local radius of curvature (p} times the

small angle () subtended by S at the center of curvature (the origin of p), l.e.,

ay S=p¥.

Sinc\e the two faces in (10) are chosen as portions of eikonals (surfaces normal to the

rays)u and the centers of curvature are the 11m1t1ng 1ntersectlon of the corimon nor-

1/b‘ Sz/pz ¥, and from (10) yveobtam a“ _
8 " by T .

12 Fy = = =F —, P

( ) ! 2 F‘ SZ ! P2 / '1.\:

"

s We now consider the perfect (complete) reflection df a parallel pencil of rays of

w1dth " S¢ and flux density F, from a g nvex curvﬂmear' portlon Cy ofa’ reflector as —
m FIgure 4-7, The. length of the ell,(onal of the correspondmg reflected pencil is 8; at

LY
-~

’-. PN
A

C1, and Sy at a distdnce R from Cl. Perfeet, reﬂectlon means that" ng ays pe‘netrate

the reflector i.e., t;he tﬁ‘?al mcadenf flux is CQnserved'by the- prdcess and pasgei,

through the‘%ermmal cap Sy.. ’I’hus (10y holds: Fy Sp = F
L3

rg the curyes by the1r tangent hnes we have S% = 8 (an

YN

F2 Sz. Apprommat~

-
-
“
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where « is the angle of ,'the rays with the normal at Cy); consequently Fq1 = Fy.. Since
Cy is convex, Sy > S and it follows that Fo< Fy = Fo. To express Fy explicitly in
terms of Fy, we now use (12); we write the radii of curvature of the eikonals as py = p

- and p2 =0 +R, and obtam . . ’ \.. )

. i
AT ~ Py _t Fop v o
. (13) Jo = Fy b, PFR . . ) . -

where R is the distance along the reflected .pencil, and p +R is the total distafice
from the caustic (the locus of origins of the p's). Thus as discussed in Section 2, the’

i

;ra‘ys -that pass through S, appear to originate at their virtual intersection point (on the
caustic} inside the reflectox.

For the semicircular mirror of radius a.(see Flgure 2-13), we ‘found previously

. that p = :g- cos«, where a is the angle of incidence w1th the surface normal this_

B i ctrsor gt sesenmesesssnrammmd

,

4lso holds for reﬂectlon fromﬂa convex portion of a more general surface in terms of
the radlus of curvature a ‘at the“point of mc1dence. Thus for a convex point (i.e., a
point on a'convex portion of the mirror), the reflected flux density equals

¢ a 'y . ’
" -2' cos @ s .-
(14) F = \S— Fy, R
) 5 coSa+R . -
A F
t ) where we dropped the subgcript 2, We ;nﬂ‘wrrewnte the above 48 F = (_HJITQ)
T where Q= F is'the curvature of the"éi onal at e reﬂectlon pomt. !
i . , PO
, On the other hand, for ;ceﬂection from a concdve pomt the c&thlc 1s fdal,,and
. R and p are on the same side of thg reflecfox‘ras iy Flgure 4'*% For this casewe
ot o 7 b g XU }‘Na., , ‘
. replace p by -p in (13) and (14) and obfa.m ""f. T ol & v s
/ L I :
on ran Y /
. ‘ ’ ':. i ‘ ‘ B ,. ..' * -~ ' , - v -~ ’ -
o ' ..- . e - 2 7‘4 80 . Ko - Jh"r .- : ,
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(15) F'=|—B—-|‘Fo= 2 _|F, R#p=35cosa-

% cos d ¥R
where the absolute value is used Pecause we.defined F as a positive quantity, Equa-
tion (15) specifies F except on the caustic R = p, the special situation (8 = 0) excluded

from the start when we introduced (10). t ?

Equations (12) to (15) apply for two-dimensional problems The discussion of the
correspondmg three-dimensional forms can also serve as a vehicle for some add1-

) tional term1nologyaon properties of surfaces. If the neighborhood of a point on a sur- P

face can be represented by functions all.of whose derivatives exist at the point

(regular at a pomt) then thera are two orthogonal directions (the pr\ncxpal dxrectlons)

on the surface for which the radii of curvature have maximum and mlmmum values, “
these are the pr1nc1pal radu of curvature p, and p,. Interms of p, and p, of the
eikonal at the point of reﬂectlon, the analog of (13) is ' ) , .

.- » ’ papb "
6 SN —abb - v
(16) F = .(R+pa)(R+ph) . , v

>
so that FEO' is essentxally a product of two terms of the form in (13) Equation (16)
‘\olds if the scatterer is convex at the reflection point; the reflected tube diverges in
both principal Qlanes (the plane$ through the principal directions and through R). The
extension of each ray within the reflector lies in general on two caustics; both caustxcs
are virtual, and requxre negatwe values of R for their spec1f1oat10n, ie., they-corre—

FIGURE 4-8 2 o g

~

< Xy

£

spond to the vanishing of -R + p, and of -R + Pp. On the other hand 1f the scatterer -

is concave at the reflection point, then p. and pp are negative and the caustlcs are
—real; the reflected tube is }’rélttxally convergent in both planes. If the reflecting surface
is convex in one plane and concave in the other (i.e., 1f it has a saddle’ point), then one
. caustic is real and one virtual; the reflected‘tub'e is then dwergent in one plane, and
initially convergént in the other. The first two\gases (convex and concave) corre-’
spond to elliptic points of the su'rface', and the third tc a»shyperbolic p’bmt. Between
D
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these’two classes of pomts his the transxtxon case ofa parabohc point; at a parabohc
point, one radius of curvature is mflmte and (16) reduces to (13) as obtained previ- :
ously for two dimensions. If both Py and py of (16) (pr if p of (13)) becoine mfxmte,

s
°
&
S TR
"“‘”’",.;v“’w.

.

then we obtain the result, for a plane reflector,:F = Fy . ¢

e In addition to the above pomts there are specxal porntsl at wh;ch the principal
dxrectxons afre mdetermmate at an umblhcal point the radii of curyature of any two
° normal sections (the curves cut from the ‘surface by planes contammg the normal), are '
equal. In general the umbilical points of a surface are 1solated points. However, we .
2o have already implicitly considered one surface all of \vhose pomts are umbilics, i.e., -

Lo the plane scatterer for which F = Fy. The only other surface havmg this property is

\/ that of the sphere. e . :

We can discus flection of parallg rays from 2° sphere of radius-a by exploxtmg

’

our analogous results for the circular cylmder One caustic for the sphere is gener—
ated by rot:{tmg that for the circle around the axxs of symmetry, ie, R=-3 cosg
m‘\vhxch arises from the rotatxonal o
symmetry of the sphere all rays incident on the sphere at an angle a (the rays m‘

In addition, thert is a line caustic R =

* circular tube) give rise to reflected rays Whose extensions mtersect the axis of sym-

2 metry at the same pomt m (after grazing the epxcyolbxd) as in Fxgure 4-9. For

A 4
‘

. FIGURE 4-9

oo rd
’

. . - ' ’
-

‘the cu‘cle in two dimensions we had only two such rays; for the sphere we have a ful,l

L

rifg. "I‘hus in (16),the radii of d‘drvature Py and py of the eikonal at the reflection

- point' eqtral - cos o and ﬁ ,’and we obtain __—

. ! . . o : - 2
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‘ change of flux density along'a ray in a pencil of varying ¢

. § - e’
o
. .-

{ .
,Flux and Path Lenﬂ A remarkable property of F as in (l‘i) (remarkable only at the

present stage of our development of a mathematical model for Scatte_sang) is that it

can be rewritten in the form

. . Fy a2 cos? . : o
(18) # . : I ‘T s .

. - A - \
where L is the second derivative with respect to,,oe of the general path length
£ +R(®) = L introduced in Equation (2‘3), and where the subscript H indicates that we ’
use the condition L'=0, or ® = 2a, as follows from Hero’s principle. .(We can re-
_place L / a? by the second derivative of L with respect to arc length along the reflec-
tor.) We may assure ourselves that (18) holds by retracing our derivation of the caustic
in Section 2.3. Our equation g(@) = 0 for a reflected ray corresponds to L' = 0, and
our equation g' (a) = 0 for the caustic of the reflected rays corresponds to Ly = 0.

'y
We mention this tow to make more explicit that. F becomes singular on the
caustic Ly = g'(e) = 0, which indicates a limitation' of our present esentially geo-

“

metrical model for the propagation of light, and as 2 preview of a deeper relation
between flux and path length that must hold for a more completé model.

-~

Partially transparent surface We can extend the present flux considerations for the

. case of a perfect reflector to the case of part y transparent media considered in ~3
Section 3, and obtain the correspondmg reflected and transmitted ﬂuxes when a pencil

of rays is mcident on the curved interface of two different optical media. At the pres- V:i
ent primitive stage of our model we simply 1ntroduqe a reflection factor 0 < P(IQ< 1 °j""‘s

. @sa multiplier for the values of the reflected flux: (e 8:0-28 in (14)) for the correspond- ~ ;\m i
" ing perfectly&reﬂecting surface? Applying (8) to a pencil of rays incident on a plané, ‘:\;
m\e_'&'_f/ace (with,So "enclosing" the interface as in Figure 4_-6), we then find that for t
N the incident flux to equal the sum of that reflected and that transmitted we require . R T\

that the geometricalliftransmitted flux be multiplied by the transmission factor « ‘\ 2

3

14P(a) !1 | ’, l . 1 ) l j . ; '

Scattering Apphcations In 1the above we applied [KL] to obtain the flux density for .

elem/titary sources (in onet, two-, and thpee-dlmensions and to determme\the o 9
g] Loss section. We now extend '

our consxderations of theg eIementary sources to the’ analogous scattermg problems. -

. We define }he corresponding Helementary scatterers" by the previous stipulation that -

the total,radiated flux equal unity and that it be distnbuted umformly over t’he available
‘directions; then we indicate generalizations We do not solve any scattering problems

explicitly, but exploxt the prerohs deve&opment to mtroduce terms and general forms

for subsequent use. . ;\- . ot v

. Thus if we have a set of parallel rays normally mcid;nt ona perfectly refle ting
plandr scatterer at 3= 0, as in Fxgui;e 4-10, then from S%ctidn 2 the mcident get o£ )
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* FIGURE 4-10
rays gives rise to a reflected set of rays and to a shadow forming set of rays We
may say that the mc1deﬂ”ays have "excited" the plane and converted it to a source
of radiation; we call the incident set the ermary radiation and the ? SCatfered set (re-

flected plus shadow forming) the secondary. radiztion, and say that the plane has

’

Jbecome a secondary source. We define an elementary planar Scatterer as a secon-

dary sburce fully analogous to the simple ﬂ&xar source cons1dered in Flgur_e 4-5 and.
Equations (6) and (7). (In a later sectlon we consider analyt1cal'ly the specific problem
that th1s corresponds to,) The essent1a1 featutiof (7) is that the flu® does not depend
on dxstance Similarly for a more general planar scatterer we wr1te the scattered
flu.x corresponding to the direction of mctdence X as . ¢

(19) ) : - F—M(R,x), ﬁ=t§, ) .

where the direction of scattermg R corresponds either to geometrical reflection,

“~

R = ' -X, or to forward scattering R = x. (For parallel rays incident on a perfect
reflector it turns out that M is the absolute square of E d1scussed in Sectlon 2, 4 if

'

the mc’dent fluxdensxty is umty, then M=1) . . l_

2 .
_ Bimilarly if we visualize rays incident peXpendmularly ona fine cylinder as in
Sire 4&11‘, and apply [H] essentialfy as for the discussion of edge dlffracted rays

&
L4
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- FIGURE411
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*in Section 2, we dee thdt the scattered set of rays travel radlally outward from the-

s

catterer. We d ine an elementary line scatterer as a secoﬂdary source fully
M -

'Mt,\_. %

@

5




o

a

¢ e
[ ”~
- ~ - . -
5
-,

. - r . S
_ analogous to the line source of Figdres 4-3 and 4-4 and Equations {4) and’(5), i.e., the

total outgoing flux per unit length of scatterer is umty, and the scattered flux density
per unit length ig given by (5). Slmxlarly for a more generaI line- hke or cylindrical
obstruction, F 1s mversely proportional to Rrbut the flux density is no 1onger the

samgm all directions: ‘Z' X o

20 | . 'F=—(R—-1MR”5; o

: wheré the dtreetion of o'bsei'v'ation R may range over all'values in the xy-plane.

~ ‘

Fmally in three dnnensxons we v1suahze a point scatterer excited by rays, and
define a secondary point source analogous to that of Figure 4-2 and Equations (1) to

(3). More generally, for an arbitrary scatterer in three.dnnensmns, the analog of .
(20) s ' .
(21) Lo o0 o F = M@%‘l , -

W . R

. : . N

where again M depends only on directions and not on distance The three functions
M depend on various parameters and the1r determmatxon requxres a more complete
mathematical model than the present one. Ho’wever the forms (19),, (20)’, and (21).

" give the a;?proprxate. dependence of 6 on R. ‘

We are now in a positi
the different rays of Section 2. Thus parallel rays mcldent pn a broad finite strip
exclte essentlally two kmds of secondary sources the body of the strip becomes a
secondary planar source with reéflected flux density equal to that incident, and th
edges become secondary lme sources with flux density spec1£1ed in general by (20)
. The flux density of the rays geometrlcally reflected from a plane are nfdependent of

dlstance,.but the flux density of the rays diffracted from thesedges decreases in general

rays; We requir§a more jcomplete s¢ tt@ing model in order td discuss magmtudes '

- )‘ as % gwlth increasing R [ (The formL(ZO) does not hold on or near a caustic of edge

near caust1cs not only of dlffracted rays but of reﬂected and transmxtted rays as

{ '
N , :
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5. Huygens’ Principle. . - ’ .

In preceding sections we consxdered the reflection and refraction of a parallel set - .
: of rays We started with Egclxdl/s restrictive laws [E] of propagafion ahd reflectxqp,
and then replaced [E] by the more general principle [H'] of Hero that the ray path (L) -
be stationary; using [H'] and the calculus we determined the caustics and foci of, the

rays reflected from*éirved surfaces Similarly, to consider the set of rays trans~

mMgh an interface of two transparent medxa (medxa specified by different
indices of refraction p) we started with the restrxctxve Snell's law [S} of refraction;
and then replaced [S} (and [H']) by Fermat's more generW1ple [F'} that the '
avel time or optxcal path (1L) be stationary. Thus all our results on ‘ray paths and ,
their _envelopes (caustics) are cdvered by the one prxncx’ple [F'].

«t T

In the discussion of systems.of rays in Section 2, we alsb introduc;ed a system of
eikonal cuives (eikonal surfaces in three dimensions) that were perpendicular to the
rays, in Figure 2-16, we sketched some of the eikonals for reflectxon of a set of par-
allel rays from-a conyex cylinder. From the remarks at the end of Section 2.4, we
see that we can construw eikonal curve of Figure 2- 16 geometrically as the, curve.
traced by the end of a taut string (taut against the epxcycloxd caustic curve of Fig-

A ure 2- -12) whose othé!' end is fastened at the cusp. Thus 1f we measure length along .
) ‘the strmg, then each point, of an eikonal is at the same distance from the cusp of the .
N caustxc ‘

In addltxon to [F'}, we also used the Kepler-Lambert flux principle [KL} to
- assocxate a mhagnitude with the rays (the energy per second crossing unit area normal
to a ray). We used-[KL] td determine®the flux for unit symnietrical sources (three-,
two-, and one- dunensmnal)é and to derive the change- in flux dﬁslty‘for a pencil of ,

rays reflected from a cufved surface. . . . .
o ’
’ . ( Thus ‘all our precgdmg discussion is overec{’b the two "laws of nature" [F’!]
o anclj LKL] plus some of the implicit physi¢s relevan} togeometrxcal optics phenonfxena. . } R
o The baste physxcs was contaxned in the o laws, the rest was mathematical manipu-

latxon based on a geometry of rays and some procedures of the‘calcul s. As a pre-
- liminary to the tntroduction of addxtxonal structure into our ,mathematxcal model for
the propagation of light, we now supplement our previous geometrical construction of .
the eikofials .by an alternative construction called Huygens' principle. This principle .
. ’, by 1tself does not nge us any new results but z:d this is often much more sigmficant) .
' ’ it glves us a new way of thinking about the results we have already obtaxned * . :

i

In Sectxo I*we mentxoned the two famxlxar forms in which energy prop ates:

7 = packaged aro d particles, or assocxated with waves At the present stage of the: '
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'developmentkthe ﬂ& involved in [KL] is im some sense guided along the geometrical
rays. It is easy to visualize the rays as guide lines for very fine' particles (a view
- held by the aIICIGIltS and refined by’ Newton—— 1705), but we may also regard the rays ~

h @

as the normals of a system of wave surfaces (the, e1konals) ! “, ,

Many individuals (Hooke Euler, ahd others) regardg‘a hght s a wave motion infa
special medium, but it was Huygens (1690) who introduced the subJect as an analytlcal »
one. His mtulthn was based on the analogous two-dimensional proble’m of how dis-
turbances travel on the surface of water. (Drops of water dripping off your fmgers

»above the surface of st' 1 water create disturbances at their pomt of impact that then

. 'travel outward in CII‘CU.

L4

les along the water surface.) '

o <@

Huygens used thé fact thdt light has a finite velocity of propagation v (as estab- -
lished experimentally by Romer, 1676) for the development of 2 wave thedry of light,,
H 'ass'umed' that .in a given medium, light starting from an elementary source at time *

ty would Spread as a spheric'al,surface whose radius r(t) increaséd in time as v(t L ).
If we start a light source at time t, andieave it turned on, the /corresponding

Huygens' wave surface is an outgomg sphencal front —a dlscont;muous dlsturbance

whose one-dimensional analog\ls shown in Figure 5-1. In this flgure we plot a magni

tude associated with the dlsturbance (say the flux densxty F introduced in Section 4,

" or a related function) as a functlon of time; at ti \t1 > tg , the wave front has moved

a distance v(t; - t¢), andit keeps advancing wu:z mqrea_smg t. (The discontinuous

i'unction drawn in Figui?é 5-2 is called a Heaviside pulse.) i

o
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) Startmg w1th an advancing wave front (hereaffer, the wave_ surface W) in three
dnnensmns Huygens regarded ¢ each point 6n the ave sufface W as a'new sourge of

an ele y spherlcal wave (call it a wavelet, ) whose radius also increased in
; time proportionally to v. Thus™if the original wpve surface W is a sphere of rad1us
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N N . FIGURE 5-2

- 4 *
s ' -

rity), the wavelet surface w. spreads as a sphere of radius R(t) = v(t - - t1) ; the two-

mmensMbg 1s shown in Figiire 5-2. To obtain the wave surface of the source's
ddvancing wave front.\g&vgens prescrxbed : ' ) . |

’s v *
[Hu]: to construct the wave surface W(ts) at txme ty >y, regard

= - -the wave surface W(tl) at time tjias the locus of the centers .,

v ° of wavelets w of ideptical radius R = v(tz - ty), and ta.kg PR
. W(tz) as the outer envelope of the set of w’s. ] . 4 - i
" T ’ Fxgure -3, based on Fxgure 9:2, 111ustrates [Hu] The essentia! notion is that if 1
' Wwe assign an apprapriate magmtude functlon toa wavelet then only on the outward, en-
R velope of the set of w's (1 €., only on W(tz)) do the magmtudes of the w's add up . "~

-t (re force) to give a sxgm.fxcant overall effect.
=
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If a plapar portion of a wave sur“face is'incident on a reflecting-surface, we can

construct the reflected wavé ‘féodt by means of | Hu} as ingi'cated in Figure 5-4. The e

FIGURE 5-4,
figure shows the mmdent wave front at t; (plus the two rays or normals that botnd it),
and a dashed front at Etz} to indicate where the front would 'have reached aﬂtime
t; > t; in the absence of the reflector. The actual reflected front at time t (the image,
’ . shown unbroken} of the dashed front at [‘t2] is the envelope of the wavelets generated
" by the incident front as it encountered the reflecting surface. . The dashed fx‘onf; is also
the wave front of‘the sh.;idow forming rays d'rsénssed in Section 2, Figur’e 5-5 sohow‘s' .

-~

-+ FIGURE 5-5'

L S .
. N 5, . . —m—
“ - . .

fhow Huygens constructionjor scattermg by a strip yxelds the closed scat;gered wave ,
surfage corresponding "fo the reﬂect j‘ lus shadow-f%rmmg plus diffracte,d rays.of .

Figure 2-1’7 (cl the result is of, coursé simpl%r the c.losed eikonal"of Figure 2-1‘7(e)
%

Similax;l 1f thé scattermg surfac ‘is th terface between two different optieal

5,

.. ‘media specitied by velocities viand 3 we c sti'uct e transmitted portjons of the .

3?‘1%71. bﬁ%ﬁ %

£ ---g "'A




‘ wavelets to taffe into account that these bortiong are traveling at velocity vy instead
of v, and then construet their errvelope to obtain the refracted wave front asin

,/R{gul‘e 5-6. = 4 ’ .

'3

,FIGUREE 5-6
V4 - N -
. o We have indicated that the Huygens' wave ‘surfaces are’s‘imply the eikonal sur-
faces discussed in Section 2. We now apply [Hu] to reﬂection of a plane wave front oy
. . (parallel ray system) by a perfectly reflectmg convex semicircle and make this
3 + 1dentiﬁcation exphcit Since all waves in this problem move with the same velocity,
o all distances (L) traveled are proportional *to time (t), so that we ‘may work w1th -
. either Lor t; m order to exp101t our previous figures and results, we wonk w1th . ol
. distance L. Th’e center of the mrcular scattérer in Figure 5-7is at x50, y 0.
s _The _cqrrespondmg inc1dent wave isa plane wave front v{hose positxon at any time

[N
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3

t = t; may be indicated

X =.Xp; our reference time is t = 0, and our reference
' T .

posxtion isx=0.
i

o We treat the Huygens' constructlon for Figure 5-7 essentla.lly as we did that of
. Figure 5-4. We construct wavelets of different radu at different pomts on the circu-
lar sqatterer, the radius. at a point being_ propornonal to the time if woul taken
the incident wave front to traver from that point to thé plane x = xp. Using Huy ns'
princ1ple in this manner we may say ‘that a point I{¢,n) = a{a) of the scatterer where

= —a cosa < Xq, ‘under excitatxon by the wave front X = -acos (se’Flgure 5—7)
radiates a cigcular wavelet of radius 1 £ - %y | = lacosa +x¢1; here x = x is the
present posmohthe incident wave front. The resultant waye front is the envelope
of all such elementary wavelets. T? construct a wave front geometrxcally, one draws

enough such wavelets to enable their envelope to be sketched. Flgure 5-8 shows the

.. case Xo = 0 {i.e., for the time when the incident. front is at the orxgm) and Flgure 2-16 \

of Section 2 shows addxtlonal curves for dif;prent values Xp > --2-, in each case, the

straxght portion of the curve corresponding to the shadow wave front is 4lso, the posi- °
tion that' would have been reached by the 1n01dent front in the absence of the scattergr. )

The curves of Figure 2-16 can be constructed cither by usmg the present procedure

=3

(01rcles centered on the scatterer) for different constants Xg, Or by using the wave -

surface of Fig‘ure 5-8 as the.locus of c1rcles of identical radu and then drawmg their

»

" outward envelope. ;o . . .

[N




: 2) X = -2acos’a and - y = asina(l +2,cos#a) s --727- =«
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'The pararnetric equations (2) describe the envelope

~ure.,5 8 we can construct its normals (the rays of Secfion 2), nd then obtain any

* flection by noting that at a g1ven point, the reflected al;d i
) equal and opp051te angles w1th the scatterer's normal.’

- . * N
. - ’ N -
. . ¢ '
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. c - . L
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Analytically, we fmd the envelope of the famlly of clrcles by th/ e same procedurg
Jwe used in Section 2 to obtain the nvelopqof a set of stralght lines. Thus if we take J

X =0, we have the equ&txon of.a Huygens' circlet . B} *
® (x+a‘cosa)?‘+ (y - asina)® = a’cos?a . ‘.

The derivative with respect to & gives y = asine - xtanc, and substituting this /. '
expressxon for y intq theﬁguatlon of the circle (1) gives x [x(1 +.tan?q) % 2acos =
Thus either ©Oe : . . o

>
-

. # - .
or . - . J

*

@) .2 o x=0 and‘y=asina,,,—-727—-<-o‘z-<-;-£. ;
‘ . 7 . , . - . [y
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. so that the cOrresponding' curve (We, of Flgure' -8) is half of a two:cusped eﬁicycloxd

(twice the _size and rotated through 0 degrees, as compared Wwith that for ‘the rays .

shown in Figure 2-12); This portioy of .the waye ‘front is generated by a pomt ona /-

‘eircle of radius -g— rolhng on the circle of radlus a. The equatlons (3) specify,the

Wg portion of the envelope of Figure 5-8, which consxsts of a line segment of wxdth 2a ,

normal to the d1rectlon of incidence; thxs corresponds to the shadow forming wave.! =

a & 0

!
Hanng one wave surface analytically as in (4) and (3), or graphlcally 2‘5 in Fig~ #

other wave /front; y\aymg off a constant distance along the -nOfmals and Jolmng the .
pomts We can construet the evolute of the wave fronts (the caustic of the rays) and

determme that R + -g— 0S ¢ 1s the radlus of curvatuz;e wh re R 1s dlstance alo’ g
the ray from the mlrro ; and, of course we can "dlscover the law of geometrlcal re-

From a "pure" vlave view, in order to determme the Scattered wave front when
the-incidernf front is at any posmon X > -a, we use the \Lave surface of (4) nd (3)
demved for % = 0 (W = WR + WS of Flgure‘s 8) as ‘the Tocus of the cenfers of
cirgles of radius lxof » and again determine the envelope mechamcally or analytically,
i e., we need not refer back to the surface of the scatterer If xp > - %x we obtain the
wave fronts shown in Figure 2- ‘16 of Section 2. The pomt ona wave surface (corre--
sponding to theﬁncident front at xg) at a{ dlstance R= :;({ -a bosq, frorn the mirror along . .
axay, may also be desig’nated.hy the cylmdr;cal coordlhates r and 6. as inﬂﬁFlgure 5-9, ’
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For,very large values of )}0 we see that R ‘and, r are practlcally parallel
gnd that § .7 ~ Za, we h.ave r~ R-acosa = xo- 2acosa ~ x -2 lsm 31

whlch corresponds to a wave from a source at x =35 a (the cuspof the virtual °\.
ca.ustlc) If we then neglect a<<r, we obtain r ~ X, and thwavgfronts approach

) c1rcles centered on the o;mgm of the mirror..- L. .. L.
. e " 2 ? T

S For mcxdence on the convex semxcyhnder, these wave fronts are real in the- s

sense as we spoke of real intersectlons foi“%he rays of Section 2 for mc?den ;
concave semxcyhnder, -the wavet'rontsof Figure 2- 16 are virtual The virtu l-wavé - _' ]
fronts for mcidence on the convex cyhnder (the real ones for the; concave casef are

obtamed for X9 < -a; these are the curves ‘of Figure 5—10(b) o (f) plus thelr "imhges .

. in the x-ax1s If -a < X < -=- as 1n Flgure 5- 10(a), then thg wave system is part zeal
o, (the part near the ax1s) and part vxrtual “For the sRhere we obtain thglmuaNave —

5 “a . -, : ]

"fronts by rotatmg the curves of Fi 5«10 around the x-axis. ' RN . i

- -,:c In FJigure 5—10(b) to (e), the stra ght( i es correspond fo tne shadow formmg vgave, s
t}1e gurves mters;cted by the reﬂec T sug st an edge wavé, and the remainingocurVes
-- (the geometric fgi'.uts), ’the set of

.\

curves completely inside the reflector alsd 1ncludes the axial po‘int ‘x.' ; 2"

° ~

‘. suggest a pvave outgoing from an or1 n at X

ure 5-10(f) which corresponds to xp = L% .
.figures id that the locus of the cusps (which correspond to strong rﬁl‘pﬁm%'e e 1t
wavelets) is the virtual caustic of the geometrical rays ,derived prevxéus‘ly*

{i‘r‘é 2-12{ The flgures in reverse order, ) to (a), 111ustrate that as xg iné

from -%5 to , the inner cusps of the v1rtual wave system trac/e_ the epi’cyalo’idal

" 'virtual cpustic of the reflected ray system;

A A
he outer cusps correspoﬁd to the v,‘lrtual / : T;\

N o R
/F f'. W ?fc" (x— -oo)\of the shadow form grays. - | g ,‘ 07 :-. e :‘-J.' s
# . N ’. F‘ K e ¢
. If we co struct the' wa’(res of Figure 5- 0 by the brocedure of Figure 547‘(1’ e.,} by "
means of »\Ya on the scatterer), t,hen we ﬁnd t’hat».the .
atiyg relatively close to the edge of the ] N
g d : 4 TR LAWY
S A S RN
N <. 9;3‘ ,°. - N :: x"; . ‘}: . 4
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1 . .

scatterer, and that the remdiping curve (the "crater" generated hy rotating the curve
p

around the x-axis) is the envelope of the’ v»avelets orxgmatmg close to the axis. (All -
wauélets originating-on the arc from the edge to the point (P) on the scatterer cut by
the Very edge wavelet contribute to the inner part of the egge wave, and the "craterx
wave' gorresponds to wavelets on the arc between P and the axis.) Similarly if we
construct the curves of Figure’5-10 by using wavelets of constantYadii centered orCthe
wave front of Figure 5-8, then the edge wa.ve arxses primarily from wavelets originat+y
.ing on the_curve near the edge of the scatterer I we invert’ the constfuctxon and
generate the real wave fronts from a virtual front (e.g., Fxgureys 10(d),),,then the”
wavelets orxgmatmg msxde the r‘e'flector generate all but the straxght W and Ty

"rounded corner" parts of Figure 2- 16

Lo m
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6. Periodic Waves. ' .
\ In the preceding section we saw that 1Hu} apphed toa wave, front gives d1rectly " .
the eikonals of ray theony Huygens lgeprdsented light essentxal/y as an irregular , - v

] N sequence of isolated d1sturbances or pulsgs ¥ The essential feature of the xﬁathematl- aw

)/ cal escrlptlon of a wave pulse is shown i Figure 61, Which represénts some -
’

P

- . ¥ 1 . : B
A N .
", - 0 - 3 \ ) ; 1 ) . .‘,,' - x-‘a N
) . . - e - . A N . . / . e . . * . R . .
- . . * . . N -5 . .
. ‘ . . e ~ +. FIGURE 6-1- ° v e =

vt . - - ’ . ) ’ R N &
- arbltrary disturbance ﬁropagatlng with velocity v alpng fhe x'-axls The s1gmf1cant
) aspect of Flgure 6- /1\1s that the shape of the’ptlse deee’ not change in t1me

. o If we spec1fy the pulse format t = 0 by y = f(x), then since the pulse form at e

. - any” t1me t is obtalned by the translatlon X to X + vt, the pulse form, at t1me tis

Pl 'venby T e L . v . \
, R ¢ . . -~ . L
) f y=f(xrvt), - ) .

]

- Phy i"ca.lly,, we see that the function f(x - vt) represent$ the unchanged disturbance { ’ .
. Pos
moviihg along the x-ax1s ( 1rect1cg1 %) with constant vé ocity v. Slmllarly a'dis .

banc.;; moving in the d1rec ion -% woul‘é be reprjkented by f(x + vt) 'S :

>
-

* 1

By itself lHu] is merely ‘another method for rede iving the ults we obtained , ; )
geometncally However 1f we associate the 1dea of perlod1c1ty HuygenS' idea of ’

. waves then we will b nave progressed’ qu1te far towards the full mf@hematical model - \

' we are developmg ' R : g o .

Kl N f‘\ e
Perlodlclty Newton ,(1642-1727), by refractmg’ a pencil of white lxght through % prism
of glass, showed that a ray of white llght' colid be regarded as mfade up of rays each

> havmg a s1ngle c lor (an ideéalization called onochromadtic light), and that the relatlve
1ndex of refractl n p depended on color. We touched on reviously in our dﬁspus— ’
“ sion of the ralnbow whl—}n we worked with y(w) with w as "cdlor parameter 4 I:th;% )
stud1es'0n the colors obtained by 111uminat1ng th1n transparent plates, essent1ally : -
.. " established that oy ‘ ' ) ' ; L *Jm -
| [ ! ' . . . .“. %i ' L
~ ., . o \ %J’Kiyi 00 Vo C ""-'"‘41‘::"“
i P - | ;
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- [N]: monochromatic light is peffodi‘c with period dependent on w.

J
Newton' s picture of light as a stream of fine partxcles' subject to periodic ”ﬁts” that

1

followed each other at regular intervals is not appropmate for the nsxble phenomena ~

he was familiar with, but the “idea of perlod1c1ty related to color 1s as significans as

-

Huygens' idea of waves.

Young (1801) combined lNewton's idea of periodicity with Huygens' idea of waves,
and regarded monochromatic light as made up of periodic waves. .o

[

B If we rewrite (1) in the form f(p) with - -

(@) . p=Kx-v), k =k ’

N -
'

€ v . .
——where k(.) (the "propagation constant)') depends on color, and where p’is called the
phase of the wave, then Young's pr’incigle states . '

[

‘ ~ .
- {Y}: monochromatic.light can be represented by a wave that is a
N W‘”}&e’ri‘odic function of the phase p = k(x - vt).

Analytically, we express | Y] as . . -

- -
-

@3) . f(p) = f@rep) =f@m+p) s m =0, 21, 22,

.
H

“a

where the period of*f is f1xed at 27, ie., f has the same Value each txme its argument .

changes by 2r the excess of p’ over an mtegral multlple of 27 gives position w’1thm I

- ,‘ /
’ R

the cycle the, base interval of length 27. . . > ' ‘

D

If we add the constraint . s . . '

@ £0) = S -

where A the amphtude is the max1mum value of I£1, then the simplest wave—'function
sat1sfymg 3) and (4) is the cirgular functlon !

'(5) A f(p) = Acosp A\cos(k[x - vt]) =ax,t) .

.

We may write on - . . - ‘ [ .

. ) : A 27

(6) - , k.= 2% : )
o o ‘' ‘i N .| ) s x N ‘ ,l ) > '
where A is the wavelength associated with light,of a single color. If we increase x by

Ax, then wé increase p' by Ap = 27?% ; each time X changes by thé length }\?we} o
~ have -\7‘— =1 and Ap : 21r so that f(p) of (5) goes through a max1mum and m1mmu.lln
in the process. The fac):é% !? = 4-2—75- is a convenient dunens1on1ess measure of dis-

~ tance for a monochromatic wave; 1t gives directly the phase change in units of 217

correspondmg to traversmg a dlstance X Slmllarly, we may wmte kvt = 27 L w1th . N

. T

S

(7 - . .- kv = 2% S '

O .. : 91 . .

ERIC = 97 ¢ -
ERIC 7
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- [N]: monochromatic light is pef‘fodi'c with period dependent on w.

’
Newton's picture of light as a stream of fine partxcles' subject to periodic ”fxts” that .
followed each other at regular intervals is not appropnate for the vxsxble phenomena ~

\ he was familiar with, but the “idea of perxodlcxty related to color is as significank ag

Huygens' idea of waves,

Young (1801) combined lNewton's idea of periodicity with Huygens' {dea of waves,

ahd regarded monochromatic light as made up of periodic waves. Ce '
B If we rewrite (1) in the form f(p) with R - .
. . : AN
L (@) , p=Kx vt ,  k =k ’ S
[) ' . B . Lo
——avhere k(..) (the "propdgation constant)') depends on color, and where p'is called the '
> phase of the wave, then Young's pfinciglé states . :
¢ AN . .
-.[Y}: monochromatie. light can be represented by a wave that is a ;"
" "\,‘.«.:,.,_.,..Vi’!{“ W‘w\ﬁe‘ri'odic function of the phase p = k(x - vt).
Analytically, we express [Y]as _; : -
(3) : f(p) = f(ZTr + p) = f(zm + p) H N n =0 3 £1 ’ X2 y T .
where the period off is fxxed at 2w, i.e., f has the same \alue each time its argument >
changes by 2r the excess of pl over an mtegral multlple of 27 gives position w’1thm f , ’
the cydle the base interval of length 27. . - . , . ' ' f' ’
: "If we add the constraint . . o3
. 3 . /
@ ° , £(0) = A , S -
where A the a.mphtude is the max1mum value of |fl, then the simplest wave’function )
satxsfymg 3) and (4) is the cireular functxon ]' 3
’ - -
(5) f(p) = Acosp = A\cos(k[x‘— vt}) =ax,t) . . R
We may write Tt S DU [ '
. o H“. 0 '
, O Sy el , . :
(6) . !k‘ - A . , . .. - -
AN - . ‘(, ) M ‘*' . v » ‘

where A is the wavelength associated with light.of a silngle color. If we increase x by
Ax, then w,e increase p' by Ap = or % ; each time X cbé.nges by thé length M‘we »
~ have -AYX 1 and Ap 27r so that f(p) of (5) goes through a maxnnum and mmlmu.m

in the process. The fac,téﬁ’ If ‘2-@5-

it tance for a monochromatic wave; 1t gives directly the phase change in units of 27

is a convenient dxmensxonless measure of dxs—

corresponding to traversing a dlstance X . Similarly, we may,wl;xte kvt = 27 % w1th
« . . 1 - iy . ¥

(7) A —_

-
&
-

- \/ R -
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R ' as a dimensionless measure of time carrespondmg to the phase change m units of 2n

AT for a time interval t. From (6) and (7) we write v, the phase velomty, as . .
oy ' * . . i _ A, A 1‘ 4
. (8) _ . vEE. ' *ﬁ
< -~ \ - "
- We are now in a position to interpret the parameters Aand T =A/v mtroduced in the .

above as well as the gorrespondlng "color parameter' we have mentxoned prev1ously .

»©

In Figure 6-2, vy plot u of (5) vérsus x for fixed t = to, and in Fig'ure 6-3, we
s . o

s

LY
3

" u(x,ty), . oy L

v FIGURE 6-2

. u.(XO ’ t)

' S

we observe that u 1s per10d1c in t: the wave form is repeated at t
_called the time period or simply the period. '

/
At a given time t,,we obtain the wave form of Figu?e 6-2. A

FRIC
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shifted o x t Ax such that ( -

‘vacuun), we replace kNenthe more genetal case by .. .
A " . i~ ) : A

* where’ Ay Ia function of « and the material) is.the v‘v_'avelength in the optical ;nedium '

-

) the idea of phase (perlodmlt)) with a ray. However, the wave picture is in general

S . v
"normals. . ! . P

AL
it iz a curve (or surfa,ce) of onstgt phase (i.e., there is no phase dlfference between

Kc S A I
> P A © el . . . -

. .
.
: L.
v '.
.

X + A to+At)_x 'ty
=%

.. P BN
T - Thus we may visualize

. . -

X T,

-~

the wave as travelmg m.the d1rect10 X=

>‘l>$

" The remproca.l of T is called the frequency (v) of the source producing.the wave

and it is convenient to megsure thxs frequency in umts of 2r, i.e., to use w = 2—,;- . .

. Where w is called the angular frequency. Thus wé rewrite (5) as

9 - ) ' ’ u 3 A cos(kx - wt) , .

. S,
and we identify the color parameter . as the angular frequency of the wave associated

with light of a single color. , p ' T

The anguiar fr,equency « is a fixed characteristic of the spurce of the waves, and :
does not depend on the optical properties of the;different media (characterized by dif-
" ferent v) through\/hlch a wave passes however, the wavelength A= 21w dobs -
depend on the medium. In géneral the phase velocity v is a functlon of w, so that
waves of dlfferent frequencies travel with different \.elocltles v(«) in the same mate-,
r1a1 Eqmvalently, since the indeX of refractlon is defmed as Jinversely. proportmnal

*

to v, wé may rephrase the above in terms of plw). ’I‘Bkﬂxg the development to equa-

tion (9) as app1y1ng to a medium with indgk of, refractlon u =1 (free space or y

(10) . . 3 e k‘ux % “; a9 v B N i PR NCL SR 4 f
. » ~ = )

A )‘( 2, Al' = A¢’ S
. e - Ty P N PWRES €~
- ' 4 . ‘}g 3 NPT . N .

- -

“defined by plw) . ’ . . .

S . L

— e l

The wavelength X is the scale factor we antlcxpated whren we sought {hd'istin-. ) .
gmsh betw een geometrlca.l reflectlon and edge diffraction at the.end of Section 2. We

could have 1ntroduced much of the above structiire into the ray picture by associating

mot'e fruitful for the usual, VISlble phenomena Fo.r convemence in the followmg, we

" may tse a mlxed termlnology w1th the rays pnde;cstood as the corresponding wave "

Thus we say that 1f light of a sxngle color travels a djstahce L in free space/ its ~
phase has changed by kL. Cprrespondlng to the unit soyrces of Sectlon 4, the phaSe .
at a dxstance R along a ray frpm tite source ‘differs from the phase at the source by.
kR. Simllarly for the yeflectlon problems of Sectlon 2, the phase of the reflected ray .
-at P.in Flg;ure 2-4a d).ffers by k(L; '+ Lz) from the phase at S, and the p'ha.se of the
ray at JF in FLgure 2-7 relative to its phase'at x=0:s gwen by’

. ‘e
s T .
. s . o

S L PE kR ( e y) . e

>

From the geqmetrxcal methods of c.onstructmg an eikonal (wave surfafce), we. see that

)
Fact " \

- . . . .
s . ¢ k] ‘e . . s
Lo . . N ‘:[° 93-99 . -, . . . ) .
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value of p. Slmllarly for the elementary sources of Section 4, e.g., we may su

.

the point source of Figure 4-1 with a set of spherical surfa.ces of partieular

corresponding to the partlcular phase dlfferences kR, .

»

Instead of workmg dlrthly with cosp 1i is mqre convenient to carry out manip-

‘ulations with

r e : !
’ . .
YL . B

(11) - e'? = cosp + isinp, ) "o
¢ . ) — A s .
) and take the real part Re(e'?) = cosp when we want to exhibit the periodic behavior
h expllcxtly If we represent/«ll) in the comple‘x plane we obtain the vector di agram
(Argand dlagram) of Figure 6-4. As we progress along a ray (increase L)’ p -
iy - - 4
R —y——— ’ | I <
) { i 5
N * 1 ] ,
*> sin p ’ ) <
i
- “p b )
g N . —p 5 X |
> : ' cos p 4 ")
baoes . 3 »ama.u»&m.»a-omor\_‘r—txﬂj . .
» ‘ A " ' . !
. ’ ' d 1 o .
FIGURE 6-4 ] ' ’
N 3 f PN
. increases and the tip of the vector of unit length describes a éircle of unit Fadius. [

The projection of the tip on the x-axis (the real axis) is the o§cillatory function .
%' cosp; eachtime p increases‘by 27r {(each time the tip descrxbes a full circle), the

x-projection goes thnough its ma.xxmum (+1) and minimum (-1) values. (The function,

T e“’ is often called a Ehasor ) More generally, we work with . -
- ¢ . A* .. \ - . -
’ ‘ - = ip
} (12) ' . <, N 4.,{:& Ae'P ) .
" where the'amplitude/ A is positive. ° N h 3 p
In subsequent applications’ we use the exponential form ,'5
(13) - . v U = Ae! (x-wt) | .
N such that u of (9) corresponds to ReU. We > Speak otﬁjlg)yas a plane wave travelmg L
in the % dlrectxon ' .
) -
To tie in the present ’discussion with energy flux consideration SS&E’&Q\,‘} we«..} \..f*
& .-hote that (in genéral)-at distances from the source large compa ﬁ avelength we »
’ may approxxmate A by a constant times \/F where F is the ux'«c?ensxty mtroduced s
for the Kepler -Lambert principle. We write . ) . .. )
. \ ; < s .
Q . 94 - 1 ) c“), N v é: *

ERIC
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(14) " o U= CyFrelll-w)

- ~ v - ’

where L equals x or r , and where F in general depends on,diétance.

For the point source (or point scatterer) at the origin in three dimensions, we

o ~ - , c

showed in Section 4 that F - = We therefore write the corresponding wave as, = '
. r .
- - ‘ s e (kr-wt) . \/2——2‘
(15) . U-CsT, re= x + yt o+ g2 R

,where we used the dimensionless kr {(instead of r) in the denominator, Similarly for a
line source (or line scatterer) along the z-axis, the wave corre sponding to the flux
. c .
. density F = T is . L
‘ : ¥ ' BN ) *
. . e!? (x r-wt) ’ -
(16)» . . Us G —m——, r=Vvxt+y . . :
/ : ° ’ o v ® Vv kr ) ' & - ¢
6 0 - . ]

S . e 5 -e - .
J -] hd

“[n the same sense that we interpret (13) as a wave travelmg along x we speak of (15)
and (16) as waves traveling outwardly along & - ‘:"_' , or as outgoing wavesg, For the }

N . pla.ndr saur e (or planar scatterer) at x = 0 (one-dlmensmnal case), F is independent¢

: .of ghstance the analog of (¥5) and (16) is . 4 . . .
' ":"i- . ( g * K . @
R i{kx-wt ‘ .
. o dq) U = s Ce x ) for X >" 0 . , .
. . ) cetkxew)  for x <0, .

s . ~ . .
: \yhichawe rewrite compactly as
’ s
[ 4 . -

(~18) N = Ce! (k|x| W)  oa . ;

. > The exphc1t depende‘nce of (15) and (16) on't and t facilitates quahfymg [Yj, .
- whxch holds rigorously only for a plane wave, more generally, the waves are perxodx.c
n t and only approximately perxodlc ipr (or in p) because the denomma,tors in (15)
and (16) are not periodic. Thus an mcrease in r corresponds net only to an incregse . .
in phase bufdlso to a decrease il mag“ftude e.g., so that although w"n s *, > O»
maxima at.equal space mten als A, . the magnitudes of these maxima decrease w1th in-4 *-

. creasing. r, However, such magmtude effects for k >> 1 are insignificant for the

Y problems at: hand ) - ‘. : .o .
P ’ % . A
We should afso quahfy the preceding, dlscussxon of phase for the refiection problem "
. by exphcxtly restricting it to perfect reﬂection. If the scafterer is parstxally transpar- '
'5'_ . rzt then the ra¥ reﬂected at an ‘angle a. thh the surface. normal undergoes in general 3 .
- an addmonal phase change 5(cr), which we add to. the. above P, - > \

-

‘Interference ’J;heaéoncept of interference was introduced inte .wave physics by °
o Young }&e discuss mterference subsequently in deta1l but ment&on 1t now to stress <,

the mdst sxgmflcant feature ar xsmg from assocxat),ng a wave (or more spemfrcally a . ' ,‘

. a

phnse) Wlth hght The essentials are indicated in Figure 6-5 for scattering of a

v‘ R . %g . . . ) > .

? . ’ e . L,
Lot H, C. ~ N 05"

\)‘ ‘v e : . ! - y ” . ) ) . o )

ST T e T

i - < ) PN . o

. ‘ ° 2 /
. .« - - - . N . .




* FIGURE 6-5

v

monochromatic plane wave by a screen containing two very narrow, slits separated by
- d > A. The waves (or rays with phase) thdt arrive at x,y (x >> d) from the two
sli’ts have raveled different paths Ll and L,, and therefore differ m phaé} by

@y . ¢ = K(Ly Ly ~ ~ kdsing s'%—d—smo.
" ' . Tet i "

The1r m?gmtudes dxffer 11tt1e, and.we may write the resultant wave at :{ y. in the form

t

(20). U U+ U, = WA + e'¥), '

¢

where we have absorbed e""-l”“" and other factors into W.. The correspondmg eﬂergy

flux den51ty is pro‘)ort‘lonal to v .

. .
o .

‘\-(21) = |Ul? = |Wi21 + et®|2 = lw|22(1 + cos @) -

\Settmg w2 equal to univy, ‘we show the'® essentlals correspondmg "
4

¥>¥J

- vectorially in Figure_'fi-G

. f.{o
IR
e : .

a £ 0 F=h1 + gl 2(1+cOS<P) SRR

FIGURE. 6-6"

« ¢ s
Ve, 0 -

de We see that if <p :L (1.e., ,0 = 0 along the x-axis) then F =+, (Th1s corresponds
Yy essentxﬁ'y) to a canstxc of edge rays as dlscussed in Section 2; however, we now have
. _ much | ore structnre for the descnpt ot C of hghf in the«shadow regxon, ‘As we vary y/

. , e g o Ce Fe vy o~ w ey 8 * o, ey
., > . it ;

ES

Toee 102

]
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* and the angle of observation 6 % X , the mten51ty F goes through a maxunmn valfje

s

of @ .when : i ) . La N . ;
) . PN . . - -~ : . N i
(23) + . = 2nm, n= 0,1, ..., g '
_ and a minimum of zero when W :
- . . R i . ) - s
(24) oo ¢ =@n+17 . : ‘ .

. 4 .8 s ~
\ This behavior is clear from (22), and more graphically from Figure 6-6: if_¢ = 2nr,
therv the vectors of unit lenggh point in- the ame d;rec?;xon along a stralght L;ne and N
their resultant is of, ; if @ = (@2ny 1), thei they pomt in 'bpposﬁe d1rect10ns and t d
4 cancel each other The results fdr F with variation of ¢ atre shown in Flgufe 8- '7

¢

Y,

. 1 ’ . FIGURE 6-7 - . ° B .

. \' Thus- for a monochromatxc wave, (flxed 7\), a parallel screen on *the shadow side
" of the slit-screen (the dashed line at x in Figure 6-5) \’h}l show ,oright and dark bands

the brlght "fringes" correspondmg to @ = 2nr ‘are located on & screen at "ﬁlst.aqpe

. >\c trom the strip bg{ . ‘/ . " C e e
N LY v -
N » . ’ d . ' - nix -

(25).- dsm_()zxL='0,>\,2>\;...=n>\, Y=g

- . - . - . . '..‘ . " . 4] ” ~ 1
i e when the path d1ft‘erence ig an mtegral number of wavelengths. Slmllarly the
dark frmges correspondmg to ¢ = 2n + 1) 1r are located by ° . e .
o) . - . ¥d_ X 32 =( 11_])-. =( 1); >
(26) - X 279 7 -’ n + 2 }‘(‘) y n + >\'d i . .

¢
-

We call (25) "constructuae mterference," and (26) "destructwe mterference "

\ - -

If we use white 11ght (a mlxture of waves of different X's), then along the axis
y = 0,we obtam"a whxte central frmge, however from (25), the 31de frlnges are dis-

.

lgy Grimaldi.) Lomparing (25) wi
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the bands of llght of different colors, that the wavelength for red llght is about tw1ce
Ty

that of blue light, i.e.,

én

.

As,

~2Ab ’

~
*

. oy

and that the colors orange through yellow threugh greenhave wavelengths A of length
intermediate to that of red and blug>

r

.

+ In the fhllowmg SeCtIODS we conslder several elementary apphcatlons to scatter-
ing phenomena of &he Huygens—Newton ¥Young periodic wave theo?y of llght Thesehg
anhcatlons ar§*associated with Fraunhofer (1787-1826, an expenme’?ahst), Fresnel

__._(_1_788 -1827, a theoretlolan), and Raylelgh (1842-1919, bothy.

>

>

v Fraunh.ofer lefractlon by a Slit. We now appiy the wave model to Fraunhofer diffrac-

tron of a plage wave By a slit of width 2a in a perfectly reﬂectlng plane as in Figure

6-8: We,take the or1g1n At the center of the slit.

.

’

s
’ .

.

\ We write the incident wave as

- ‘
5
e’ . '
FIGURE 6-8 ,
ﬂ.
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and interpret (28) as a wave of unit flux d’énsity traveling in the x_direction. .Using

sy

i

e

U, = ei(k;:wt). '

v

L4

(Hu] implicitly, we regard U; as exciting wavelets in the PFine of the aperture; and”
A . .
specify-a-wavelet originating at x

el (kr-wt)

we use

29

L)

L3

¢

-

el (kR-wt)

—

=0, y'= 0 bythe elementary outgoing wave form

v

-4

i’

4

¥ R= ¥ - prsino+ nt.

1]

~

as in’ (16)‘ Sumlarly for a wavelet onglhatmg at 0, n as in Flgure 6-8
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Every point of the line ¥ = ﬁ, x =0, for -a = n=a (every line element of the slit)

corresponds to a wavelet of the form (29). We repiesent the net effect of all such

"\

wavelets at a distant point, T by the integral

.- . a
@) . U= [, umdn . ;

. . .
el
s )

Restricting consideration to r >> a, we 'approximate R in the exponent by
: . ) » -
(31) P R ~r - nsing.
- In the denominator we use simply R = r, because |U! is much less sensitive to’
changes in the denommator than to changes of the phase (From Figure 6-6 we see
that a shght change of the magmtudes of the two vectors has little effect compared to

a comparable chang in the phase difference ¢ .) Thus (30) reduces to

el (kr-ut) - . P

Tk G(0) ,

@2) . U=~T

v

. a
@) . .. Gloy= [, ewnmody,

"“."i“‘/ . . P

i.e., U.s anelementary cylindrical wave (source at the origin) as in (25), tim'es a

> function of angles G(#6). (the scattering amplituie). Thus for 6§ = 0 or 7, we have

a ol e
©4) ; S G(O) G(m) = f_ o Om = 2a, ; .

‘and ohtain . ' . - ' —
. s o 8 v . .

Fa . . »

glka s _glkasin® _ -9jsin(kasind) _ 22 [sinjm sing)
ik sin@ ik sih9 ka sin@

]ssnm=mmno,
where S is the width of the strlpa,and T ;s an oscillatory functlon with zéros at -
* kasmo-mr,n—:tl 22,004, The 11m1tof ') for 6 — 61s 1. . L.

-

-
(35) G(O) =

".‘ Raylexgh Born scattermg by a sphere As another 111ustratlon we consider Raylelgh'

Born scattemng by a sphere of radius a whose optical properties, differ’ only very
slightly from the free space in which it is imbedded (a "tenuous" scatterer). We use
the geometry of Figure 6-9 with the sphere at the origin of the coordinates, and take

v L

where 2a .is the gidth of the strip. For the other angles, we.integrqté the exponential

k-

b

-2

s shpedl




the plane wave ' i . \ - *
’ M ” * <t . . q\
(36) , Uy = el(kz-wt) ’ '
- LY
- as the ineident field., . ‘ s
We regard the sphere as made up of elementary sources of spherical wavelets,
elkr-wt) -
such that the source at ’ahe or1g1n produces a wavelet C T as in (15). The
. elementary source at the pos1t1on p = (¢, n, £) excited by the incident }1eld

U= g1 (k5= wn) produces an effect at T = (x, y, z) described'by *

~ )‘L¢°
rad ) D . [
. FE - _C_. ix(&+R) -~ 1ot s , . .
' . u ‘ ', kR e ‘ ’ , - ‘.‘
o@n - L . :
. \ J(x—g)“ty n>2+<z~ar>2 Ve +pt) -2F -5, ..

.
‘ where the phase 1s chosen to agree with that of JU; when R 0. The net effectiis *° " -

represented by the volume integral of u over the sphere of radxus a: )
I

v . s . .
o . . - : . L
(38) : U = fup)dv) - '
3 . « 9 .
where dV is the volume element‘ RANRN . ‘

= "approximate R in the xponent of u-By l 7 .-
. . ¢
N ' (39) ; ’ R .
e . 'Y
where ? is a unit vector in the denom1nator we use simply R =~ Thus (39)
h) " becomes - ] )
i € » .
@0) ‘
‘:‘? & “V‘: Nt e —t et Y - . v N *
@D .- \G(O) = fem(-F- Py SR .

. .

fe., Uisan elementary spherlcal wave outgoing from the ongm asqnf(l’.j), times a
,Scattering, amplltude G(()) that is independent of r but‘depends on the angle of obser- _
vation 6 (a.nd because of.,symmetry, on no other angle)

14 ¢ 3 . -

1 .

N

Since ¢ = p. z, where 3 -z- is a.unit vector, we may rewrite the Scattering
L] M ! . vl’; ) “t\.‘
amphtude as . )l .:
< - ’
, . L (- . ™ ~
cw A [ R = ikp * (Z-F -
;nv-z,(gz), . 6(0) = Jewi (-Hav ., .
- »

V

If r =z, 1ie., m the forward scattered dxrectxon 6=0, We hg.ve G(0) = de V where
V *is the volume of the scatterer For a!‘b1trary 0' the easiest way to 1ntegrate over

\
S the sphere is to 1ntroduce a ‘new polar a.xm in the d1rect10n z- r

. « o

B

" Ceoeorb L
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From Figure 6-10.we see that since z and T have unit length, Z - T is a -
, » , o -
?
L] - >
- - . g
' / FIGURE 6+10 ‘
, ‘ » 0 - ® \.‘5\ B . - *
vector of length 2sin 3 . Thus we may write L ) :
. ! " . ’ - - ¢ 7 . ! R
S N 2-f=2sin2920 , , ‘
* . wheré %o is a-unit vector along the,axis zy of a new coordinate system. Consequently
¢ ‘ a a - - A’ ) a - .0 ) a . -
@) , 9 "« F@-1) D =p - 22sing = z2sing b
1. . - N . At w .
s * : - N . N )
where zouﬁ?ﬁ v 2y is the projection of p along-the new polar axis 2§. -
v L . : R
. . We now have P ' . )
: ", 2kzysin® . 2Kz, . !
, 45) 6oy =Je ° 2av=fe Pav, i K= Zksing.
Y (3 iy . N
» / 'f'\sn ' ! ' . .
We introduce the polar coordinale system of Figure 6:11, so that we may replace ~
’ " e} ) . e . N '
- ] ,
S ! * * . ' N
N ’ . ’ & :: "5: * D
- 1 b
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e x e /__
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,Zo by'p cosﬁ and use dV dop?dp sing &B with p ranging from

. 0-to-2#, and,BfromOtOﬂJI’hus ’ :
(-3 }‘ ) 5, v

. . 27 a2 1 .n . ) .
46) G(9) = fO dozf;) pfdpfo elKp éosf5sin/3d/3 .
. «

r \ '
'I.‘he integral over « y1elds 27 directly. Thé integral over g may be rewrlt as

.- :* s m—————a !

- !Kc - .~iKp_.iKf, - 3sinK

R | z»;\ e
‘Thus, we have reduced (46) to -
. N . . )

. 4B - G(0) = 21rf p? 2 d“q“igf‘psml{pdﬁ .
oo \ ) L0 ' : .

i
v

The  remaining mtegral is 51mply the derlvrglve of f gosKpdp with reSpect to X:

’ ha
.

(49) G(0)= :4K_ f cos Ko dp, = ~41r d sm\Ka - % [ae?{sxa _*sﬁlgﬁ]’

-~ . 7 a

. 5 . . A,
. ’ S . ;B? 5”
which We rewrite as . 5 ) <
N ‘ R . , . - ’f é /‘
| ’ L - e ’ <

! ’ 3 - A i 4
(50) G(o) = V3[s“‘x - "°sx'] = VIE) = G(O)Jﬁr»', v = 5”—%‘ , ¥ = gkasin @ﬁ:ﬁ, g
{x : . .3 ., 2 .

.

’
-

\iihe‘re 'V is the Golumg‘of the Sphere The value \G(O) =V obtained from (42) for
. £f=z, 6 =0, is also the hmlt of {50) for X — 0.5 \Moreogenerally, the result

.
-

iy cr S 6O = fav = vi, . -

. A é -

. ¢ <,
whiéh follows from (42) for r= z {i. e for forwé.rc& scattermg), holds for a scatte:r;e %

. . W i
s. of arbitrary shape subject to the' gresent restrictmn thaf it be "tenuous. " . . ?57 !

A
<

* From (403-and (592' we'h yw} T, \ N

;f o t
. N '%ﬂ-.w((}) . ,,«

-

s0 that the correspondmg'ﬂux density is,proportxonal‘,&o V2, If a<< A G e for a
"small scattere;"), we have J (0) %1, and consequex?v
. Y

. !

A

L] )

. . g el lkr-wt) )
. (53); et U= CT ..;’--“s

N ~

In_the next® sectlon we ,conslder an apphcation of scattermg whxch hinges essenrsally
on the fact that U« V/r fora vanety of dxfferent scatterers . ,




Rayleigh St:attering

“In the present sectlon we dlgress from the evelopment of the mathematxcal .

s
model for scattErmg in order to discuss a beautiful application to nature, this mate-

¢

rial serves a$ a supplement to Sections 4 and 6, and provides a m“gre complete.discus -
sion of one of the topics touched on in Chapter 2. The development is based essentially .
on the flux principle {KL], an,d on the fact (determined by mterference experxments,

_as discussed previowsly} that sunlight maybe decomposed into light of different

colors from req to blue with associated wavelengths A, to A, such that (approxxmately)’

(1) P L. A= . :
The wavelengths A associated with the intermediate ‘colors of the visible specfrum
(prange, yellow, green) satisfy A, > A > A, . <, . ,

In 1871, Rayle.igh developed a mathematical model to account for the blue color
of the sky, andhfor the red color of clouds.near dusk. The essential feature of

Rayleigh's modet is that when rays of different colors WWifferent wavelength A) are
scattered by the molecules of the earth's atmosphere (mainly mtrogen and oxygen),

the scattexje_r_;s may be reé‘&rded as secondary sources in the sense of Equatlon 4:21) ¢ ~

. a

thh flug ensx.ty fYWersely proportxonal to AL e.,

’ [
(2)»"“ W F = __CT = IUlZ FO’ .

k-“" where r is dxsta.nce from thﬁ%‘catterer and C 1s independent of r and A. Raylelgh

used 4 more complete form of Equatlon (6.38) (one we consider 1n the last section of

thls.@:,hzq)ter) to show that Ux — ; for various scatterers, (e g, broad ranges of rela- .
rA

"tive index of refraction i) prov1ded their d1menslons were small compared to A, and

) alfgdnstructed_ a simplified intuitive derlvatlon of (2). » ’

NS . P . E

. he sunphfled derwat.lonlls based on dxmensmnal analy is. Thus, if we divide
l;e scattered Js.u;,densxty F x lUI2 = G— by the incident value FO, then the result is

+ in endentoﬁthedumtiln wh1ch we’ measure F the ratio .k
Y. 2 % - »
b ;"“‘"“"““‘ et ) F _ "G r
PR e Rl 2 F— = _2 . &
L4 v e ’ 0 r - /\ !

vy

s',
is s1mply a number and,doesnot depend n units or dlméhsmns (smce F and Fy are

s1mply different values of the same phys1cal quantlty) For a scatterer of volume V

whose dlmfnswns are very small com‘pared to A, Raylelgh assumed —~

Rt ] ~ ’ s BZVZ
[R] B * - == 2
. - . Fy r
where B is mdependent of the length dimensions of the scatterer. (In Equatlon (6:53)

we con81dered a speclal case of [R], in Section 9. we consider ‘an exceptlon ) He could

* ' &

then obtain (2) from [R] *by using d1mensmnal analysis.

Aruitoxt provided by Eic:
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J We indicate the length dnnelrswn involved in [Rj as {L} and cons1der the powers
T vofa L that enter the varlous terms We have ° Sl ., N 4
Cp v . t -
¢ (4) . r? = {LZ} : V2 o= {LG}', = {L%,
: “ - 0

whu;:h state merely that smce r isa length r? must be the square of a length since
a volume is a léngth cubed, Ty Involves the Sixth power of a ]Jengtlr The fact that the .

ratlo. Flo is 'dimensipnless (a ""pure" number) means that B of [R] must satlsfy

-

» \ . - 1 . . ‘ . . Ed

) I ¢ . B=a{LY. T S .
’ ‘.&-' , . - ‘ -

. . q
+ In view of the restfiction on B mentlonéd for [R j the only length par’ameter avail- °*

. 1 ablefor {5) is' A. Thus, lt,follows that : . !
©) . B . 2 . .
* , it q {°’ I . ‘ o~
] § . 3 o A ' ‘ } Coy . / .
where g may depend on optical propertles (through a relatwe mdex of refraction p) -
A4 /
, and_dhrectlons o . o ) o .
(93 . . (‘ ' N , .
From (6) and [R] we have Rayleigh's inverse "fourth-power law" . .
« . . . * . »
i (7) . . ' \ ‘ L - g’f_YE- ' - -
- : S Fo r2x '
<, Substituting (1), we see 'that - ' : - R

o . . - FIGURE 7-b 5
s34 . .J\ . - . P— . ’ . - A N .
N ’ . . . < ° /
' blue component of white hght is scattered s1xteen times as strongly as the red, IQ,
" the flux ratio of the blue and red components observed at an angle 0 frem the direc-
tion of incidence is given l)y& . . o - . . e
- R ) .

-

Equation (7) specifies the scattelred flux dens1ty at a point r(o) as in Figure "7- 1.

" The flux scatter rough a spherlcal capon a cone of halj.-angle a around the for-
ward direc'tion 0 =0, as in Figure 7-2, is obtainexd by integration. The area.of the . -
cap, the portion of the sphere of radius r, is given by r2 times the solid angle Q(c) o

: the cap Subtends at the orlgm (i.e., r’Q is the surface analog of arc length r6
' - . . 1
, l. ' . , I | .. ! * . !

v 1041 10 : ) N

Q - . , K

ERIC '~ . - . . o
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FIGURE 7-2 o
!
3 «

encounte¥ed in darlier t:vjo&—.dlmensmnal. probléms) . In terms, QL_Q ‘,(L‘he pg}q,g.a.ngsle)
measured from the direction of mcldence Z, angd in terms of the angle ¢ (the ammuthal
angle)'measured ina plane normal to z the area of the cap is g1,ven by

N
‘ -
¢

. 27 o
rzfdﬂ = rzfo d@fo sin9d@ = 2mr? (1 - cos a)..
- ’ X

- 3 - . -
The corresponding flux through the cap may be wriften*
v .

©) _ rzfaFdos(wWﬂ

¢ .

Substitutmg (7).into (9) we obtain

’

w2 .
) | | : a(a)=¥—4fag’-,dsz,

" so that ¢ is independent of distance r, If @ =, then the gap becomes a complete

e sphere the value o(r) (called the "total scattermg cross-section") is the total flux
scattered in response toﬂgp mmdent plane wave of unit f}ux densrty If the incident
flux density is (say) I;, then the total scattered flux is Ii‘o(n)

PR

Let us now v1suahze an 1nc1dent beam of rays flowmg through a tube of cross—
séctlonal area S as in Figuré 7-3, and apply the Kepler-Lambert flux prmmple [KL]
The flux through S at zyis IS, ana from {KL] #his equals the flux Izs through the

e °
] ‘a . ' o

R A v ext Provided by ERIC
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P

“

e (12) - L5, =L Qe) + Izs~-

" in order to emphas1ze the dependence on AL If we neglectf o¢c) and approxunate Q
Fisy

mag use (16) thh the nght-haw side mulsgphed birN‘,ﬁewapproXunat&the et effeﬁ{\'
e

» e . . * ’

N 9 ! ?
sur)ace S at z, plus the flux through the in&omplete spherical surface consisting of .t
the gphere minus the cap o, i.e., . ‘ ‘ R
- /‘ i m
. (11% - Qa) = 1,] —r!dsz L_adp = dcpf singdo

Regroyping terms, we have
. LN

S at zy equals the initial value

1,S minus that diverted to other direetions by sca ering out of the beam. ,

* From (9), (10), and {11) we have -

T

as " LS=15 - 1,Q

‘which states simply that the flux in the beam of hr

V2ro : .
(14) . Q(oz) 'ﬁ'(‘:r) - o(a) *}\f’f ‘,:,agfiﬂ 5 . e
s e S a e e e ;
which we rewrite as ] ! ‘ .
Loser * K] . A ‘ ~ ’
(15) -~ , s Q = —4 . o N
. i A . o=

¥ n’!’”‘
,by the total scattering cross section o('n') ie.if we ignore the "hole" in the sph iio\a‘l
_surface), then the difference’between the initial and final values of the flux along a -

parallel gea.m mtercepgd by}scatterer anywhere along the beam is

(16) ) 1,8 -fs = -I,Q Cr e

It thefé ‘afe N guch deatterers in the beam, thenmnder approyrxate restrlctlons we o

H
-

'.,_(1

an et %,.m s (%4 ”)S~ “NLQ. - ST
I there are n scatterérs in unit volume in the geometry of Figure 7-4,.then we have .
T '
B . '0' . "."' o . ... 12 LR .....:-'
¢ . ) 23 > e
FIGURE 7-4 ) ) " " ‘s
aa, r . . - .
If;‘ 2 ‘ ) v L N . N
N-= nS(zy; 24) , and (17) reduc\es tor / . ) . .
‘(18) e o I - 11 = ‘ﬂQIl (Zz - ZI) M . M . |
T T |
A : ‘ ' :‘ m' / " ' " P
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By

and céxesequently

. L
. ; . . y
(20) - N d = Io_ei‘b“Q"-, K N el RS i

: 2. . 4 R .
< cee ofa v, . . 3

; ® 7

- ‘From (36), ve have Q'= f, 5othat . : . '

. ,(21) . .o ' \:— ,V ',' . " I ‘= ’I(‘)e-n(A/Aﬂz

- - o ~
\‘, 3 : -

" near dusk See the dlSCllSSlO? of (6),in Secnon 4 of Ch?pter 2; .

»

/2 unit mben51ty If one scatterer of a collection is. aﬁ a d1 %ance z from the entrant:e
face of the reglon of scatterers (as in ,Flg'ure 7.5) then we*muItlply (7) by

o

. .,i. , . ”> FIGURE 7-5 H ’ \ . .
. - i : W .e..-,. '

I -

I(z) = Ioe an of (20) to account for tfle mtensj.ty Ioss of the excltation that reaches it.

Mmooy ox o.oa 2

Sunllarly, if we observe a scattered ray from thlS scatterer at a distance r from its’
¢ !/ -

;

o

R T I P
- Te & % * !
¢

) Q o : "." : . - ,q%?“~“;‘—‘:'-?:u : h v

ERIC - ; Fre T

o

PAruiroc povidodvy i [ . ., s - - . -

with Ij as the valye at say 2=0. , LT TorTmm e

-
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' , ( X . o
. ,J .- M s . " K )
— o : . ”~ . - Voo s I"‘
p Fand . . ‘ » -

center, we incorporate an adXiitional factor e'“Q" to account for the additional loss.
Thus, the scattered intensity; for one scatterer as in, Flgure 7 5 becqmes o

¢ (22) ) ' cT ' F = EZ_I e—p(A/)\..) (zrr) ' . . “‘

' 4

where z + r is the total ray path within the regioh of scatterers.. ‘

. i
Let us rewrite (22) for z+ r > 1 as

. . . S - L
o .

. _ B __p/- ‘ .o A
(23) . . F K‘—eD\/} . .

-

“a form that shows that F vanishes for both A ~ 0 and A~ «, and has a2 maximum at
a definite value of A, say A = A. leferentlatmg (23) with respect to A, we obtain

.

dF _ dF da™¢- -DA-4 -4
24 n s 55— = B 1-A"°%D
24) , & e D4 ) %)

which vanishes for the wavelength -

h@s).’ M= D = M N ‘ o
corresponding to a maximum scattered intensity : o’
Lot \ ’ i
e - R e B B :
! . A . A4 A‘e : F =
‘ . . * ¢ ‘-:'.’hv
Dividing (23) by. (26) we write the scattered intensity as .. ., !

- vy At YNy
‘ s F 1~ /\/?\ y
. . ‘]\? P \A }\43 ¢ e

- } ‘ - . [3
4
at F is expressed,m terms’ j}f thj maxlmum val&e F A and the correspondmg

wave ngth A. This simple model applied to skyxght gives a maximum wavelength

in the hlue- gre.azyregmn Qﬁhe ~sunt s’fépectrum""*— vt e e 8 ¥
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s 8.~ Méthsd of Stationary Phase.- e ‘

We.Qare now_in a position tecbridge the gap betWeen the geometrical optxcs ray

- procedures of the early sections and the elementary wave procedures of Section 6
' We do so initially by considering diffraction by a strip. We work with the wave forms

of Equations (28), (29), and (30) of, Section 6, and the geometry of Rigure 8-1. Thus
) [ 1

5 - ‘ .t

. A\]
Y 4 F x’y
v ' i l " ‘-
~ \ -
, /
T FIGURE 8-1 ¢ 4 s 3
. . . . . - ’ e
we take the mcxdent wave proportxonal to ‘ T e -
v ‘)* * , 1(,..1 R ' - !
) L e - U; = et g E
é L7 ~. ¥ I N e - .
. k-

» .
o - the wavelet from a secpondary line source ogrthe strip as

s
S .
-~ ¢ ) - .

hd ikR .
@ u==, R=VE+u-n*, , s

¥ o

and represent the net effect of the wavelets at r as the integral
N
a 3

3) : U - C?u(n)dn cfwlw
¢

" We have suppressed the time factor ,e"iut for brevity, The actual wave forms are

» ' .
obtained by multiplying the above by e™'vt and then taking the real part of the result.
{

’I;he situation in Figure 8- 1is a.nalogous to that of Figure 6-8, and if we -

1

: fo
assume R > a 3. Inlmax we obtain the same forms as (32) to (35) of Section 6. Thus

“if we expand R to f1rst order in ﬂ (as, prevxbusly), we obtam R r - nsing, and
consequently the previous procedure.yl(elds L ] “ q&ﬁ : | :‘ v
| . ) . ] . for oy
f i z‘ celh‘j eiknsmedo - . ) o ‘5 <

i
[

4) . " . . .
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Thus except that the constant c may'dlffer m. the two cases the present result (the .
. ¢
,Fraunhofer approxxmatxon for scattermg or diffraction by a strip) 1s the same as that .
for the sht (The relation of the result for the strip to that of the sht shown by the

R abmze is a specxal case of what is called Babinet's pr1nc1ple )

) ) We introduce y = ka s1n0 to represent the phase ;d1fference between the rays
from the centel‘ and from an edge to the observation pomt and write T' = ﬂ—l (the

h’l“'ralmhofer pattern factof") The pr1nc1pa1 maxxma of T «correspond to y = 0 (i.e.,

E

v

to the fonvard and ‘$ack dmectlons 'tfh th :r respecthely) The secondary max-
ima of I‘ occur ‘gt* ’the zeronof 'tan 'yr& 'y Whlch are given approxxmately by y = 1 43,
2.46m, 3. 477' and, for larger values by Y= (n + %)Tf forvthe first three of these

S zeros of =— d';/ , we have r %":’0 2? 0 13,,-0. 09 respeot1ver The zeros of T corre- \
spond to y = nr. The angular ha1f-w1dth. of the pr1nc1pal maximum (obtained from .
T A

the position of the first zero,

- 1

lf: asing = Tl’) is sihg = 0'=°E = 5y

The forrn 4) is nestrm‘w\r >> a. 'Xn order to consider situations where r
and a are comparable in, magnitud®, or r < a, we use a different approximation for
R 1n (2) Thus we now Telax the requirement r >> a é?nd assume instea that we

,restrlct the d1rect10n of obser\ratlop to e nexghborhoods of the forward scattered -

© . T
ol Db

Qe

' .The' present mtegral descmbes Fresnel diffraction by a strip. . -

1 ;4 co

After we have analyzed the behavior of (6), we treat the analogous problem of ‘

'scattermg by a circular cyhnder, A hmmng case “of the result we obtain will corre-
. spond to our geomgtrxcal optlcs results of Sections 2 and 4 in the form

» .

'1\ ’ “ 1 N ixL I .~ ' H A B
: ‘ . L e H, 3 e e

(M - L .»U‘=—‘c =CJFe H, .

o 4 -
N :/1‘ ! ‘ ! RL'}'{‘ ' e oo :‘" \}" e g“.\; Tsan

»

1 , ¢

~

E b D ‘ B Cet T R ipyeeeaamelit ,";.

" where LH is the ray path obtained prevxously by using Hero!s pr1nc1ple JH']L, L"‘,.LS .

\ T

its seCond derivative with respect toa parameter along the circle .‘and F is'the flux

densxty obtained by the Kepler Lambert prmclple [KL]. . m::w-:::"_. mRTIT

2

Our derivation of (7) from (3) will obviate the previous special assumptions. lTL_ AN

.- _ o

partlcular, we will not have to assume Hero's ""principle of the extré'mum PatiT 7"
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prefers" nor "abhors," and
\

e w;ll show that Hero's principle ‘

[H'] is merely a consequence of an approximate ev luation of an integrél. . .

The approximation procedure is known s the mE thod of Statl()rlil_‘;’_ph&Se Jtwas ¢
Y SRR e bk >

1ntroduced by Kelvin as a mathematical me od for approxﬁrfahng a glass ¢f 1ntegrals

e e e €

" that come up fr;equently in wave problemsr The integrals we are /oncerned with are
of the form U \fuds, essentxally- as in (35.

P
Intmtxvely, the method is based on Young s concept of mterference and the
essentials ‘were discussed fo,r Fxgure 6-6. A complex number,AeW may be repre—
sented as a vector of lengtltﬁ‘*,g&and dlr‘;@,ﬁon angle {phase) ¢ on an Argand dxagram,w
and the resultant of a set of numbers Aje ‘% is simply the vector sum TelT=ZA e °
shown in Figures 8-2or8-3. "If the phase angles are all the same, then the elementary

J 4
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o
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' vectors all point along_a stra.lght line and T

°
@

ZX we say that the vecths reinforce -
each other or that the elen;lentary waves ";nterfere construcggvely " On the %;rj e,
hand, *f the angles are srmﬁ that the nose of the last vector@ends up at the tall .
ﬁrst’ %ma closed’polygon then T

thé elemen

v

=0; we say that the vectors cancel, or that, .
s wayes 'intérfere destructively.”" In the Sifuation shown in Figure 8-2,
the phase cp,, changes sllghtly (varies slowly) w”th mcreasmg'ﬁl and the resultafit
magmtude T is close to its' maximum value In the situation shown in Figure 8-3,

the varlatxon of ¢, with n is large and T is small. The A, and ¢, may depend on

* 7 a'parameter 0, and the magnitude T(6) of the resultant, . .
~ . b . . f
o . i@ (e) R - N > Y
®) T(0)e'™®) = 3 A (0)e ™ ] - -
' - ' n= ’ ¢ "
may assume any yalue between 0 and LA, with variation.of €.
Simgilarly we rnay use the same idea for an integr:al of the form . ’ A
. M2 ) ‘ ©U ;
© . ] fn A(n;?)e“”(";e)dn . SR Lo

ary at 6,; for these valuds the situations are analogous to Figure 8-2 '(no_t JFigure 8-3), .~

. basis for 1ntroduc1ng labélg and concepts for our subsequent more_general discussion.

RIC .

R oo e B
W

.

-

.oscillatory function of. ;H

The 1ntegral of (4) is of the above form, and the serles of maxima and minima shown
by the Tesultant can be interpreted graphically by means of a vegtor dlagram such as

Flg'ure 8-2. Similarly. for the integral in {6).

In we can express <P in terms of a parameter 6, and then find that %g =0 ) .
(and ge(f # 0) for some set of values of 6 (say 6;), then we say the phase is station-

and we expect the resultants T(6;) to be large. Before discussin‘g the general method
mathematmally, we first consider the Strlp Jproblem without using the method exxﬁic-

itly. The results we obtain initially by nelathvely familiar procedures will prov1de 3

:

zdn -9(-771.), [,

my
ﬂ 1ei1rn

v /(‘ . : A

whose path in the complex plane (i.e., the trace of the pomt *‘) ats @ function of~* .

71) generates Cornu's sp1ra1 of Figure 8-4. The magmtude 1.7(771)] = T{n,) is an’

Figure 8-4 for (10) is a contmuous analog.of such’cases -
of discrete vectors shown 1n Fxgures 8-2 and 8- 3 Although the “elementary vectors"

of Fxgure 8-4 form a curve o£ mfmxte length the curve splrals m around the point
1

> * 5, the resultant T [9] approaches the limit —= as 94y ~ °.. - 3
2 2 Z ,/ 9 Ly
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We now consider 5 (n) analyucally For large values of n;, we use -
% N : c o 4
. . 1275 o) 1 1»‘ 2,
a1) 9(111) f f e!™/2dy = F () - _“—i‘fh Da ey .
- I3 - ‘ ~ 4 . : ¢ s
Integratmg the second term by parts, we develop (11y as the senes
. . . , .. 11{1){/2 . 1 N ' .
. 12) 5 % e f1+—=+...]. .
e (m)\ 3() vl R »
‘ . Thus the error }n usmg the leadmg term F (w) ig proportxonal‘i vl The leadmg
)t ) term 1tself i.e. ) N MY S ot ’ <
y s NP M.:' - aa e
.. e }’ ' T ,;;'55", ~.‘-i'-g~3\ e : Ry
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LIPN .-~ A =\ rr - = - .
(17) ] K ) de™
. . N AP ,
Thus {14) equals * . / S ) '
. . /
. o /
. = -x2 = s Fa
- ) J j;.e ax =\/7.7" . :
' b 5 . : .
Similarly, we have : ‘ T .
, g . ; —
-Bx = ..Zr_
o T fema o E -
,- . . v Coy :

" using B = - -2— to obtain ’, T ’ ‘ 7 ’
) n " N ~ S ) - A
‘e, - 1 2 .1 1+ 1 ‘T I - 71
20 . 5(°°) =5\ S ST B B e (cos +isin ) = ==&/ -
.o : 2 '1} 1o B 2 . \/"2' g 4 .. 4') ’ ﬁ L.

over tW¥ real axis léads essentially tZ (18).]1 . . . : ' -
On the other hand for small valués of n, we expand the exponential of (10) as a
. series and integraEe term by term - ' ( ) .
’ ;. »
4 o~ . iTrn3 ' .
(21) 9(m>=fo [1+1—7§£+~~]dn=m,+T'+-:-. _ .
Th terms of (10) we rewrite (6) a'sy-,%; '-\ . ’ r f
’ : /
o [ 1kx /
’(22)\ @ L ‘ U = ﬁ- e—k_' CI ’
- . N ¢ ' . .
. + R ‘_'v-:.e ,
(23) . It gmt2an = 3,y -Gy, -
. . ,
- - my =\ ta-d) . T
R s + X '{; ' -
s, ) N . L .
e 129G "
‘ -
. 7 . '

A

Introducing polar coordmates r2 = x% + y%, tang

'

: /o @ . . ‘
(16) ‘ I = f”, j;) e“'zrdrgtf? =§1r-»J;) e R rdf. : . . "

which’ 1s known as Laplace s invegral V\w/e treat the integral (13) heuristically by ) ’

which corresponds to the vector from the orlgm to the terminal pomt of the upper
sp1ra1 m anure 8-4. [The result may be vemfied by Cauchy's theorem If we use

7 = -§(1 +1)/ VT in (13); we obtain fe’c d§(1 +,1)/ V7 where the path is along thE’ '
45° line in the complex ¢ plane. We replace this path by the positwe real axis plus
the arc from O to 45° at infinity, the integral over the arc vamshes “and the integral

- b . - .
; . oA - s L * . L




Before applying this result to the strip p'roblern,,let us first gpply it to an "infinitely

N )

RN

L3

PR

e

Jvide slit,” and determine ¢ for the Huygens' free-spact wavelets that simply serve
to regenerate the incident wave. For the limiting case ka ~ <, we have Ny~ .
Using the limiting values of F obtained fr(?m (10) and (20) we obtain ’

24) T I~ G - T =25 (@) = VI A, ' g
L . 4 - - FI]
and, consequently ] - ’ . .o ‘.
- [ ’ . . .
@) T . U~c sz_” elmgiix o . )

But an "infinitely wide élxt'.' rné?ﬂs no obstruction, so that U of (25). must equal the

" incident wave e'** . Consequently, the unknown constant ¢ of (2y and (22) for the

.
3

‘elementary Huygens' sources is - ! .

@6) . ¢ = —K_gina | ” -
. Vven
More generally, 1f we are dealing with the secondary sources on a scatterer excited
by the incident wave, we. may write . . ey 2,
(27) — | ' Ve eim/g
- . i o ’ TN

where g may depend on the material of the scatterer, and on directions, Thus we _
h Y
may rewrite (22) as .o l .

. ’

*

L
. - n Id
: -in/4 co, k - .-
e, U=t Q- Fmole, = Vo (8- y) 1

- N . . -
We now apply (28) to scattering by a strip as in Figure 8-1. There are essentially
three different ranges of y that we consider. ,

’

t

. — ol . . L N

.. »In Figure 8-5we speclfyt ee different ranges of y at a fixed value of x, say R
_three different portxons of a screen placed parallel to the str1p We will use (28), (12),
s and (21) to gbtain explicit dpproxlmatlons of U for the three ranges of y correspond-

mg to the-braces shown in the figure. The range y, is centered on the geometrical

pro_tectxon O? edge of the strip {equivalently the neighborhood of the shadow boundary

J= a), ‘and t e range ¥y includes much of the geometrical projection: (the shadow) of

the stnp on the screen,

Fial ¥

The range of y1 corresporids to n,>>1 and -n_>>1, and mcludes y 0 as the

. special case = -n_>>1; the range of y; correspondsto n, = 0 and -5_ >> 13

F
b
.

LN

P{

2\5_

the range of y; corresponds to -n, >> 1 and -5_ >> 1. If we replace X, y*by
[xl, lyil then the results will apply not only for the three sets of points (x,y;) in
the flrst gttandrant shown m Figure 8-5, but also to the sets obtained in the other
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“quadrants by.ifeflegting the three given séts in the x-axis and in the y-axis. If, say,
M, FN1>> 1, we approxxmate the integral by the first two terms of (12) obtamed by |

using (20), ie., L ’ ' wx Cotas
. lz . . n.‘ . '
2 g » i1r/4 T2 e .
. T ~ ch S e >> 1,
(29). \ (m) J_ T, 4 I

however, if ny is verytgmall then;we use only the lead;ng term of (21),

iy ¥ ‘ - .

(30) 3(7?1) ~ m ) m ~ 0. -

At d point X,y (or more gererally a, the four pomts Ixl, ly,} -We have

for the back stiattered directmn Ixl = -x. Essentially as for (5), we requlre
l(a'+ y)/xl << 1; subject to thlS we see that ~

.(32). U ~ gelkixl « a5

lx/k(zi’*y)il ~ 0. g

i, = ; (a +y) >> 1; substltutmg (29) into (28), we obtain “
s elkixt . ° . -
U = T 3 + J- « .
g‘/—z-ﬁ [ (n,,)‘ (-n_)] - B
(31) { ) * ) P ' % >
£ - z j
~ geik{X’ 1 - lx__l e"“‘/‘ ei,k(" y) 721t B 'eik(a ‘Y)ZIZ'X. .
. V 27k T a-y “Taty, .
» , ¢ ‘ . e ! ’
8
) where £is noLnecessamly the same for the forward scattered direction Ix| = x as

= p




. ¢

M o Ue(a-y) . : R+

- ‘ R4/

. 4 *] b i -

Thus in thls_lmzngagsgt;’xp is a one-dunensxonal secondary source Takmg into
account.that U 18 in general a functxon of direction, we write ' R
~~ i N @ ¢ 8 &
_‘@‘:}) . A - U ~ gie*"“ for x290. - . S '
In the forward dlrectxon, we requxre g, = -1 m.order for a-geometncal shadow to
exist in the sense of Sect10n’2 ie, U~ -e*"‘x 781m11arly for the case of a perfectly.
reﬂectmg matenal we require lg-| = 1 in order t.hat the ratio of the reflecteda tor

3

mcldent ﬂux densxty (*U_/U,41%) equal the prevxous result unity. Thus we have

“~

P . X . i + ° . . N
(34) ° M i s - .
U ~g et =eldetx  for "x<0.°
where 6 is a real number determined by the material of the strip (or, equivalently,
by the boundary conditions). For pi“eBent purposes we take & = 0, so that

@5 U~ el Tfor  x<0; . :

. -~

I - : Ve .
physically this corresponds for example to 4 water wave or a sound wave incident on

a rigid immovable strip, and also (subject to additional conditions) for the reflection )
] .

of an electromagnetic wave from a 'mei;al strip. i

\

We introduce the gbl)/géviation oy ]

. S g . “ R - : ) ..
T ' ' "B A e“ﬁ '*Y2/2|X'] Coe e
(36) . . u,(Y) = V 2k © Y ’ . 0
s . e B . 4
86 that we may rewrite (31) as , . ~

. . §
@7 - . U, [efFrufa-y) tus@ty)] -

The present results appl§ for the geometry of Figure 8-6., From (§) we see that
L A ‘ . ' -t . : .

~

~U (a-y) L

U ~ -e*l ' N .

Y

~ 8 )

l
i ~ T
¥ i 7,

, K L7 Uelary) 2

. % . .. . FIGURES-6

. - ( ~ *
R ~ x + (a¥Fy)/2x so that the exponehts of u.(a ¥ y) are approxxmatxons of kR
The factors kR are the phase changes of waves travelmg from the edges
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of the strlp 0, za to, the observatlon point x,y so thd.t we may mterpret U (axy) as

the edge waves correspondmg to the edge rays discussed in Section 2. Thus the nor-

N

mals of the different waves of (37) shown us directions of propagation in Flgure 8-6

are also the rays cor respondmg to such paints as P, in Figure 2-17(c).

’
ks e

In the region of the geometrical shadow the total wave Ur is the sum of .
U; = e¥™ and U - -

. . . A

(38) UT+ =Uy + Uy = -ue(h_y) - uf(aty),

';.e.' , the shadow _formihg part of U , cancels the incident wave and we are left only with
the edge waves or diffracted waves. Thus, corresbonding to (38), since U, |2 OC% - -;—”,

a ”perfect shadow'" does not exist for nop-vamshmg A, the diffracted field is small for

relatively small X (in the 1mmed1ate vicinity of t.he obstacle), but 1t.mcrea.ses in magni-

tude as x mcreases and the shadow "disappears" with intTeasing dlsta.nce from the
_ scatterer. (However alternative forms are required for either x ~0 or x ~ «.) The

field Uy, is oscillatory both 1n x ami y The flux densxty along the axis (y = 0), cor-

. responding to |Urp.1% with . ' . - .
(3% T Ups ® 4 7::;2 i/ gIkR R =V +a » x+a?/2x,

»
¢

is a relative maximum, this is the analog of the Arago "bright spot" discussed for the
dlSC In the back-scattered reg10n enclosed by pmjectlons of the strip edges parallel

to -x; we have : -
@0) Ur. = Uy # U =el™ + e+ ya-y) + uefa+y)

o B
o

~kx i s g
where e™® ig the geometrically*Feflected wave.
. L 2

The above ‘res(xlts (31) to (40) are subject to two restriciions:‘ the first,
fy -a)’x |’< 1, enables us to use the approximations in (3), and restricts us to ob-
servation near the back and forward scattered dlrectlons the .second k(a * ¥ lxl>> 1

is requlred in order to ﬁapproxxmatlon (29) for 3, The first bounds lxl from below

({x| >> a), and the second\from above. Together the two restrietions also state that .,

ka < 2ma/A >>> 1 (i.e., the strip is very w1de compared to the. incident wavelength, and
that y cannot be near :a (i.e., y cannot a%roa‘ch the shadow lines or their analogs in

the "lit region™). The corresponding edge wave u, is the "near -caustic" form.

We cannot use (31) to (40) for a point y = a in the range of 312 qf Figure '8-5. Jdn

- that region although -n_ = Wl_k— @ty ~ \fIZa >> 1 'we éee that -

k

N, = \/-ﬁ -y =0, 'lhus, in the general form (28), we Stlll use (29) for- 5(—7) ), \

but we must use (30) for F ). Consequently at the four points Ix|, lysl5 we obtain

¢ - . i, ' ‘
) . 118 121'1' ) -
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The second and thn:d terms are of the form consxdered in (31). The first is a cylm-
drxcal wave, i.e., tITe\Wavafdf a line source on the edge —a "true" edge wave decreas-
ing as 1/VX with mcreasmg distance. The third term becomes neghgxble for very '
large ka for whiclr cas‘e the total field for x > 0 reduces to

R Py ,°~ . .

-

©@2) Ury = U+ Uy ~ 2ol - HRER=D | gy

i

- - - ¥

I;eikx % e-nw] .
Thus the field in the neighborho_oii of the shadow-line is halE the incident wave plus a
cylindrical wave correspondiné to a line source with source strength proportional to

, kia-y). Asy ~ a, wesee that U™ }-U' hnearly this holds, whether y approaches

a from above from-'above" or "below" in F1gure 8-5. Sxmllarly for x < 0 e have

v P —

| @3) UT__z Uyt U= e“"“*‘%—e"‘“ #H(klx)) 8e=3)

~ - e e .

In the range of y3 in Figure 8-5, we have N, >> 1, and we. again upe (29) fon
wave at

both Fresnel integrals in (28). However, in contrast to (31; the ‘scatter

- P

the four pomts |x| lysl, is given by ‘ -~

U,z ;%:-e*“’/‘ [—5(-77-.,)'.4' 5(’ﬂ_)] ' ‘

T et . |
. . nyimn ,eik(y a)2/21x| eik(y +a)2/2ixi
~ Ikixly [ 222 ai7/4 - -
(44) ) Fe \/ X e =.» -2 T a

-2

. » —¥[lI(a-y)+ue(a+,ﬁ] e &

Ve
5 . - - % ¥ - s

¢ so that such poiiits’ rece1ve only the edge contrxbutxons of (37) .

P

M

'I'he above exp11c1t approxxmatxons suffxce for present purposes. A more com-
plete discussion of the problem of the strip is given in introductory texts on optics in
which the field at any point in space is uépally ‘computed graphically from’ Cornu's

_+ -+ spiral Figure 8-4: ' ':u) T ) .

Thus up to moderately large |x| the scattered wave, is largely "confined" to the

A

‘§tr~xp 1{}1 < a'in.the sense. th’t'\mthm thxs strip we obtam the geometrically reflected ,.

and shadow forming waves. These two waves correspond to the waves scattered by®
an infinite plane however, superimposed on these are the additional waves. that we

. mterpreted as edge waves. Because of the additional wavés the\,shadow is not °

o Ai(

- perfect careful observations (sub_]ect to the present restrictions on dxstance
parameters) on the shadows of scatterers havmg very regular edges show a system

of brxght and dark bands parallel to the edges of the scatterer (a "frmge system")

&

R ¢
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Consequently the exppﬁents must satisfy \\

> -
¢ - . bl - . . ¥osob R e
. . z

We now determme the.number and separatlon of such extrema that may be observed
in the shadow reglon on a screen _parallel to the strip.

- = -
Nn e e

-We use v
, \ £(3) : e C
. . d d¢ s
45 3 — N = -, . = , - “-_”._'
@5) R - fo Fo)dn =F@ gz, &=L6) i
.. “ : * =
to differentiate, U as given by (22) and (23), amd Gbtain - “a . =S i

- ..,,-;-,—-1:.

U T Far v dn, ", o, dn_ . dq dn_‘(
(46) & {’9»(%) 5'(71)] e"‘"z/z dy+.'e”""/2"_' T .

dy. T”HS'

el et —

) - dy ' dy dy

L

The extrema, 05U, obtamed from dU/ dy =0, corresrpnd to . -
@7 - ' eimnd/2 o gimn2/2

P

\ . . ]
(48) T -nt )\—ay eS| m=0,81, .. -
T A . : » . AT -
o . [ .
The separation of extrema is. thug” "™ \ N N z
. . -4 _mx’
@9 . N o e 2wl =y = 22 ‘
—-‘\\\ (// '
and there are N extrema, with N given by . i
L T 2 i . ‘ a
G0~ —— o~ N =22 2k’ da? ' ,

Ay X ‘}\x !
-~

in the geometrical projection of the slit. Thus the number of extrema mcreases with

mcreasing strip width or;with decreasmg wavelength, or decreasmg axial dlstance.

s ey -
f""\’:“'“""’v”—‘—""“-“"* e, ‘kwxhj&‘lkf’\./%

—_

PR S,

Before contmumg the main lme of thi's section, we con51der the range of very )

" targe |xl exeluded in the discussion hased on L (29). If Ix| becomes very large, S0’
that & a::l ~" 0, then both 1, ¥ 0 and 7_ & 0 in (28), and we approximate both *

Fresnel integrals by means, of (21)\ Thus " -

~17/4 N
& e}kxxl_l}i/ﬂ ] [a-§ +a+y] | NS

Y

v o
\

-117/4e1k1x|} ka = *H(klxl)ka . L . ' 4

Thus for thlS case, ‘the scattered field is essentially that of a line source of strength

"Ka., We der1ved this resulttvla (5) whichr means that it is restricted to angles near -

. : - e v

the forward and back mrectrons,vcomparmg with @), we see that (51) is merely (;he .

....

appropi'late form of U /at/large d15t,ances is snnply &H(kr)kaI‘(O) <

. - ”
% . . - N
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Method of Statxonary Phase "We have dxscussed the prelimmarxes and can now turn

\;o the ma.m topic of this section. Ifi general, we consider an,integral of the form

9
ri"', - Y

o A ™ a,
! * -
62) Iwmwﬂ;@?—mm

. i #
where G is a slowly varymg function of x compa.red to e“‘L(") in the sense that Q
hanges brily by a small fraction of itself when KL changes by 2. If there exist” one
or‘ more values of x for which g% vanishes then the princxpal contributions to the
value of the integral arxse from the nexghborhoods of the extrema (or statxonary
values) of L, elsewhere the contrxbutxons cancel through destructive in’oerference as
d fined prevxously We reiterate that the intuitive basis of this idea is the recogm—
tion thatv on an Argand diagram (as in Figures 8-2, 8-3, and '8-4),:1 is a sum of ele-
m ntary vectors whose direction (essentially the phase kL) is in general a rapidly
) T angmg ‘function of X, so that the resultant I is consequently small. However, if
‘there ex1sts a value of x for which™ -% vanishes, then the phase is statxonary at this
;v lue and only slowly varying in its vicinity; the elementary vectors near this value

\.,f are a"lmost in phase and add to gwe a large result. N '

Proceeding analytjcally, the Taylor's expansion of L(x) around some value' X, is
‘ ’ L

t

+63) L) = L)+ L' (xa)(x - %5) + L& - %)2/2 + -0 5

here L'(x;) means"dlfferentxate -L(x) with respect to x and then set x equal.t,o x,,
imxlarly for the seCOnd derivative L" , etc. If a value x, exists for wh1ch L' (xs) =

R -
Ea . v

| - X2
L"(x)( xs‘)

i . /
Assummg that Lx,) # 0,and that the hxgher order terms are neghg1ble, we keep

° [

s

L{x) = L(xs) +

/ r;, only up to quadratxc terms in the exponent of (52.) We replace ‘the slowly varying -
. function G(x) by 1ts value G(x,) at the stationary poinf,(the point marking the center
_» of the region in, which the integrand contributes sig‘nificantly), and work with

E)

‘ ' ikL (x Ltt(x )(x-x.)2
(=1, = Gee™ f_at-"k by

ikL(xs) ‘
é(xs : . V kL"(x ) [3(71 ) = -9(17 )]”
Ny = \,}L"‘”(}iﬁ_). (A:a:!: "Ixs"‘a .

. :\:.’“

where, F is the Fresnel integrdl as in (10)ff.
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In particular, if #n, ~ =, then J ~ F (=) of (20); we have J ()-- F-w) =VZ e A, |
’ . : s

’

and consequently

; S kL +1n/4 ) o
(56) . _ I, ~ Ge *° . \/EF" , ,
’ ‘ 4 \ ‘ Y \ \ ‘4 :' } ‘3
“ where Ehe subscrlpt s mdxcates that the functxon is evaluated at the statlonary point

Yo xe. (If there is more th?n one statxonary pomt then I is a sum of such forms.)
~Compare (56) with (7). « . - ‘

. ¥ ° ]
b ot
H s Before applymg (56) 1¢t us show that it is actually much laxger than (52) for the

case where the mtegral has no statlonary point. We show that if there are no statlon—

arijalues of L, then the integral (52) is only of the order E as compared to I
whichi (from (56)) is proportlonal to“"'/lE ; since k >> 1, Is is therefore much larvger.
To see this we introduce, L as the new mtegratxon varxable

‘ . Lta;;) ) ° L(a,) X
rp= | T IKL(x) gy = G(L) _ikLgy - 1 + | G kL
w1 jacj,‘x):.,; (“)fix‘.?,;gfL(-a_)‘ Lo Tk ) (5% d(e )

-
&

and integrate by parts in order to develop I meﬁowers of % :
y

A}

\I L ! ’ Y
- (58) A = [9-(9- ikL} = [ @‘i(_). ikL] @) )
B R R 2 Lea) "

Thus as long as L'/G does not vanish m the range —a to a , the integral 1s only of

order % and is therefore much smaller than the statxonary case I, of (56). ° .
l{;‘f

As a fn;s illustration, we ¥pply (55) to the orxgmal mtegral (3) for the strip w1th -
the constanﬁ iven by (27): N .. . . S

.

L4
I ‘ . . . -

(59) . U‘; £ /%e-hr/d.l , I = fa ﬂdn , R :_- ,/x2 + (v - ,7)2 % .

Comparing With (52), we’see that G@y) 5/ m , and that L(z) = R(n) . Introducing -
’ tp -as’in Figure 8-7, we drfferentiate to obtain » R PR T

-

4 —> . :
. ' i . 4 .- ; A:y' ,m‘

, . . FIGURE 8-7 . S

. . . . B . ‘ .

2 . . K . l! !

(60)/ s "‘g_L = I'. =Rt = n-y ’ = nR- Yy = sin(ﬂ )t ) '1-, {.:~
ol n . ‘/ x3 + (n- y)2 ) , R
. “y s R ,"{

R ‘128 .

. . ’ Ly
122 . . w0
¥ _ . “ . H "
* o s o8
Ryt TP ST I RS e et e - e o ampema’ = e & peeges e ora yowi i Dogmn o - e = b *;;‘ PR
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(61) R" = ' - (n'Y)z = _}%(l . (n-Y)z

- ,,/xz + (y - n)z [x2 + & - 17)2]3/2 R2
:The stationary values corréqund to R! = 9:
(62) ;' ' N =Y Qs =

Consequently

«

(63) R, = #x = Ixl,

_ Substituting into the integral of (59) via (55), we obtain

- L,

' a ﬂfR - R - PR ‘ o } P

L=, San = A= [3tn) - 3 )] = \[Ee [T -Fm)
(64) , ‘

o kR " ’
T my = V= a - = ooy s )

, Introducing (64) into (59) yields the earlier form (28). The limiting f¢rm based on
(56) gives U = ge'!x! as previously, with g = -1 from our "shadow condition."

We may generalize the above diregtly to an arbitrgry angle of incidence as in
Figure 8-8. The'incident plane wave may be written '

4

FIGURE 8-8
1

(65) . Uy = el cos at iky sing , X

__which is merely the form of (1) obta.med by row{cmg the Xy coordmate frame through,
an angle -« . Since the phase of (65) is zerq at the or1g1n (tT)e center of the strip),

e
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the wavelet orxginatmg at the or1gm has the same phase as obtained from (2) - "’?‘T

ever, the wavelet originating at 7 is excited by U, (0, ) = e stha? g5 that ife phase

. < .
contains the addxtxonal term k7 sina, Thus instead of (2) we have °; z‘ Aj ,-g K oo
u : , R -
(66) P - (n) eikRHkn sinat A ¥
- u n =.c e ——— N . «
’ ? VKR . Bt & s
o o . : ' vy »%%»/ ;kiigg F ool
and we replace (59) by . / !
~ ! ~ oy
. - . ra ikR + 17 stna ) .
67) U=) c&———4 . ‘
;( . e - f_a \/ﬁ n ;_ ) ‘
- ‘ * . . Y ;&‘: ‘
where the appropriate value of ¢ will be deterrined from a limiting case. / v
Corresponding to (52), we take G = c¢/VkR to be slowly varying,-and differenti- N v
ate the phase ' - / . .
(68) ) L =nsina + Vx2 + (n-y)2 , ' o
“ e . . R : . ’
with respect to .. We now have .
v . ' P . !
. . = o ¢ - Los‘¢
(69) | x L' = sina + sin¢ , L" = R ’ ]
. . . . % - l .
'The stationary values correspond to ,
. T . o7 o
(70) L'=sina+§1n<p=0; sing = -sina; -¢ =-a, 71+ @, - \
which contagns‘Eugliq's principle eflectlon and the principle of shadow formatmn .
Since sin¢ =,.ﬂ%1 = 11_}:{_1 9w, we see from (70) that y - 5,-= lxl tan as, .
R, = xsecy = Ixlseca, - ‘ }
(T1PLs = nysina +xsecfp, = (y - IxItana)sina + 1xl seca = ysind + Ixl cosa .
. Similarly;, “- g b - —
n = Costa ) ,
@2 s P S
» ’ ! . ' =, .
Substituting into (67) in terms of the limiting form (56) we obtain . )
y c HxL_+in/g : o ) ot
U~ —==e¢ ° 21 ‘ e -
s 9 . * o
( , . e R . %
. - = ekxcos'd+lky sina v in4 = . "
t emmess " kcosa 27l e U, - - ‘
c :: .
Comparing U, with U, of (65), we detef'mme ¢s from the shadow condition U —U;:
’ L keosa i/
74 / . Cor = = e~i7 , !
( ) ; . s ‘/2? . R
* . - A : A (4
. ’ , . s )
o<

‘[MC - o -
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which differs from our earlier result by the additional factor cosa. Smnlarly the'cor-
I

respondmg value of g for a perfect reflector as for (31) ff is now replaced by gcos a

Usmg the more generaljform correspondmg to (55), we now have

*

E U = gelklxlcosq¢1kyslna eIt \/_ [3(77+) 3(77 ):I . .j\‘ i ‘ v

&

f . vy

& 1

> k N . N . .. . - . .
s =\/———-cosa xa +,lx|t a-y) e ‘ 4 o
M wlx| seca ( an yl : : ‘ . ,

i

* ! h
1 v
I

N e

Cn:cular Cylinder. Let us now apply the same method’to consider rscattermg of the |
,plane wave (1) by the convex cylinder as in Flgure 8- Sf The point a(tp) on the ‘ \

N -

'

. S : é o
A ¢ ¢ | " | . ‘ i N )
' ’ 4 ) 4’ ' .' i % . ’
4 - - “ . o . F 3
\ . ; v ' . -y
: N FIGURE 8-9 1
cylinder has the coordinates a cos¢, a sinq; , and the excitation at the point ig * ‘ '
’ M 1]
v ella €3¢ We write the corresponding scattered field as the integral of u over the
. s . . ,’ R . . . .
arc ady: . o , . }.;{
’ f37r/2 ¢ R ) d -
(75) . N U = __.elk +acos @ ady . ) - .
s S /2] kR - T
¢ r Yy

< We do 1ot know c- completely, but the result (74)’3nd the correspondmg form gcos a
suggest| the generalization i whxch o (th ﬁ% of mc,idence with respect to the sur- ' J

face normal) is replace<d by thgQ present analbggr 'lp Thus for convenience (and as
. I

can ustlfled with a more, comglete model) we use - . - 7 .
= B N - £ . :
b T sr/z ) o .
K —nat lk(R+acos¢)»- .- e
Je g = -ga —81"41, 1= —_ cosedey, . . M
& V 27 ‘]7;/2 , e \/_ . . ;;x-,{i
and we shall ee that cos q? iy the integrand is approprlate for, both geometrlcal re-
flection and- shadow fOrmatlon We consider only the range 0 < 0 < exphcltly, “«
s however, the resu‘lts may be extended to all'@ by introducing absolute values of the ]
L
trigonometrlc functions (as requlred to preserve symmetry) ) s
* ¢ ’ . . ‘( . ' »
» . ) "\ s
. '3“ ’ LR A % N - - s:
O R L ' A s PR 4 . *
ERIC - . 185 E R
AT " Lo . o -
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- . . ~ - ' = * / / )
3 , ) - e “
. The phase of 1 f's'plroportipnal to - \ " . :
) (77) - L=R%acosg.= \/r2+a2—2ar'§35(¢-0) + acos ¢ , : TS
> ) and its derivative ‘ " f y ’ * oo
ER : | ' P L ﬂ‘
L (8) : g—}; L' = 2rsin(@ - 9) P =9 _asing, o
- . o
vanishes for the two values ¢ = ¢, or ¢p » such that ) ‘ '
A . I ,_,/ . . ; . ] ‘» 4’ }
N . : ’ sinlpp - 6)  sing, e . .
(79L) . 7 = -, : . . ‘
‘ A - \ . . ;
. . . ®
M ! . /
. sin(¢p - 6)°  sin(r - ¢p) ¢
. (79D)' s RD T 0) - D
(A 112: D \ v bo-T t’ ’ e
N qu a ngen value of 6, the phase has only one statxonary value: the value may cor- .
respond either to geometrical reflectlon as in Figure 8- 10, or to forward stattering .

, L asin JFigure 8-11. The first value applies for y in Wegmn L in Figure 8 -10; .
B the second value, which yields the shadow forming rays; orresponds to y in the

* "dark" region D' as in Figure 8-11.- Equatxon (79L) corresponds to Euclid's prmcxi)le «
of,reflectxon and (79D) to the prmoxple of shadow formatxon , ; *
< 6
+ . 3
L] ’ ’ € . ,--1
; \/ Yo ¢
e T .
P i . L . N
S L . , :
3 v . -
\ . o
. ﬁ“ : : — X .
2 cos (- P ) - ,
¥ "2
' . - ¢ =
. . .
___”_____________\_.___'_ .
. . . L ¢ 1
' 14 ’ ' - ‘ - .
¥ -, : . . . .FIGURE 8-10 - .
SRR T - B . Y -~ , L
2 : e ¥
#7  The second derivative of L equals . . p ) ,
‘ . ~
s &L a?r?gin (¢ - ) . . oo
-480) —= =IL" = 2L cos (g - 0) - apos<p s
, ) d(pz R3 R
o, ' . ” 4 ’ W . - e I
: o126 132 - ¢ _— =
EMC ‘ oo e - e ,.,J, A I B -~m'~~«7» - oy
: [ Ea AT It S S TS SN Ty ! . , P
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and substitutling (79) leads to the speciall values of the stationary points. Thus for
3 P ‘

. . - R
v either<case - .4
' . . L ‘ i N o ®
e Ly =" [-asin?@, + rcos(¢, - 0) - Rycos 95 ], ‘ o
. . R, : . \
L - . o 4 .
i .. where Rs\and ¢, are the speei_al values shown in ei'ther Figure §-10 or 8—11'. At a
forward point,‘we ‘see from Figure 811 that rcos(r - ¢p t 0) +a = Rpcos(T - 9y); / )
. - - PW.
gy A . Lo . LosF
consequentl,‘y_, rﬁcos(qiD‘ - 8) Rq cos ¢y ) a, Ql (69) reducesto -, .:) .
: ° . 2 . .5': N "n;;‘,‘“:l%‘-
. (82D) . Ly = -If—Dcos2 op - e ¥ . "“@lk
v On the other hand, at the reflection point, we see from Figure 8-10 that . ‘ﬁ‘? o‘ .
~/ . 4%‘ AT A e
rcos(¢; - 0) = a+Ry cos(vr -9)=a~Rycosy; consequently , v ‘«J ,‘f" P
N . . 4 A ‘s‘ ) S
Ly = -ﬁ‘i‘: [a1 - sino,) - 2R cos o, | ‘ . C o
(82L) . ’ ' ' ) o3 ————— 7
. "%, 2acos(m - ¢p) a . N N
- . . - . B N L LA 14 - I - AT — O Y o s L L PR S .3
: . R [31_ -5 cosi - <pL)] . N
Tes L ’ . ) ' ” * - .’.-’ .
. Similarly the stationary value of the phasge function at a forward '(point.equals
) L > 7 i . -
. (83,~DQ Lp =Rp + acos ¢p = RD = acos(-;r?q’n) =X . ; '
4:& ‘Although we could eliminate R; and ¢, "in the reflected value, it is simpler to leave .
" 7 Tp-lathe original form - ~ AU AV
: (§3L) ' L Ly =Ry - acos(1r-</5L) 3 < .
P : ‘| ] “& ”
here (for a g1ven value of r and 8) R, and ¢y are determined as in Figure 8-10,
. .e.,,by noting which ray {or the correspo,nding value of ¥) of the incident wave front‘ .
can reach v{0) via reflection in the cylindrical surface. Lt '
- h ’ ' e
} . s AL
| I
. oo K . - i P ’
' n‘}}f’ - ¢ ’: ’ Kl 1l733‘ A} ,
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statlonary pomts are given. by " '
(84) —- E
Substxtutmg ( 6Lmto (76) and then entermg (84), we obtam
- ' ) o LT - lkL ‘$ . L‘;‘r il s l > y
(85) s = —gaG Tg gacosys <
B . P 1" . 1y
.- 8 L %_&E \;R Ly “ -
Thus for the perfect reflector:gt/ 1 /v:/e enter the above D-values in (85) and obtain .
the shadow forming wave | N 7 e _. ..
. L ' - “ix o ! \ b . -,
(86) Up = -é U,\. ,5
Similarly, the L-values give the geometrical reflected wave (
. . ' ¢ . &k(R; -2 osa) ' P m
(87) ) acosoz —e! L™ 2c e @z, .
) (RL cos oz) N ’ ‘ . !
which we consxdered in _Sectxons 2 an'd 4 _ﬁrOm a geometrical basis. In particular, the
& \ flux density ratio F/,Eo of (4:14) is simply the present |Uy |2, and, similarly the
previous (4:18) corresponds to | U, |2 of (85)- the present forms are richer in that *
they make the ray path (Ls) a8 well as the caustic (LY) explicxt ! Y
¢ .
The corresponding-Fresnel approximations are obtained by using (55) instead of
(56).. We change varxables-to n ‘= ainn«) » D,L = acos ¢ D, L and obtain .
A .
, ! _4« : '
SINCL ST - Un%«’ I - Ja]s  n, = [ - 9 .
where UD is given in (86) thus (88) is simply (28) for the range x> 0. Smularly,
IR terms of Uy of (87), we have "~ 7, e o -
% u = U,- —l— [9(1’ - 9(17 )] ’ N
’ ] '
, cm vty g0 290, S, ,
®9) M o AN .
s 7 [2%k@®y + 5 cos a) : L
ek . (a - asina)” Q=T =@ KRR
‘e %l 7Ry acos oz .. A L . -
. where ‘g (n) is the Fresnel integral as in (10) ff . = - N

The field on caustlcs Although supplémented by phase considerations, equations (86) s
..and (87) are still results of geometrical optics which we could construct piece-by-
piece from the specxal "laws" of the earlier sections: (H'] gives the directions, |KL)

the. magnitudes, %nd the phases may be* obtained from Newton's idea of peri%dlcxty

However we have now obtain%d these results essentially from the single idea)of
. ) ] Il -« & &

. »
4 .,...._(. ;.&M
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periodic waves that evolved through the work of Huygens, Young and Fresnel into
[YF]. U = uds ’ . “ "
L4 = . f \:_-/ .

which represent's the scattered wave’as an integral of elementary cylindrical waves et

over a line or an are (as in (3), (67), and {75)), or of spherical waves over a surface

E or volume (as in (6:38)). Staxting with [’YF], we used mathematical procedures to
1,- " apprommaie the integral, 1n partlcular we obtained the general short wavelength
‘ ~ gpproximation (56) two of whose s‘pecxal cases are glven by (86) and 87). Asxde from
. « , superseding the edrher special laws, [YF] is apphcable to many other phenomena than
: covered by [H'] and [KL], or by (56). We have already apphed [YF] to obtain the
Fraunhofer, JFresnel, and Rayleigh-Born scattermg approx1matmris more of which
are cover‘ed by*(56). We now apply (YE] to supplement the short-wavelength form (56&
o bry determimng the ma.gmtude of the field on a caustic, the case LY = Ly=0 excluded
1n (54) and in our dxscussmn of [KL}. Thus, for example, the analog of (87) for reflec-
tion from the concave semicircle has a replaced by -a (see 4:15)), and does not hold
v ~on the caustic L" =0, Ry = -(a/2)cos @. However, we do ndt require a spec1al "aw"
to obtain a non- smgula.r form but merely a more appropnate approximation of [¥F]

than given by (56). o : L

On a caustic, both L" and L" vanish; in addition, on a cusp of a caustic (where
the der1vat1ve of the equation of the caustic vanishes, since the curve changes direc-
tmn) the third derwatlve L® must also vanish. Thus for such cases we can no
longer approximate L(x) by means of (54), i.e., we must. keep Ydditional terms in the

. ' Taylor series in order to obtain the first correctaon to L(x,) . ‘

w" - -

Let us assume that the first n,- 1 derivatives of L at X vanish, and approxi- -
mate L(x) by the Taylor polynomial of n-th order: N ’

»

L. i B N — o . R

.

< For this case, for infinite limits (corre,gpondi’ng essentially to (56)) , we have

»

s~ . L 0 « nFl)/n! ,
_(91) 1 =ij(x)eka$x)dx ~ Ge'ls [+ otxmn 4x
- ) , i . . )) ’ " . . )

_.If we introduce a new, variable y through y* = k(x - %,)"L/n! , then w¢ may re-

\

, ' 1 1%
- (92) . 1= G,e”‘Ls<—“'—>"f e dy ,

- write (91) as

kL,(") -o — P *

4

.o , _ .
where the remaining integral (the ‘gamma function} integral) depends only on n.

N £ "9
* -
- ’ ’ - = !
> e e ’ ”~
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O . 129
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R < b4 At
._,m,.xm‘.* C P o x‘."e , , ~ » < LQ
B Using (92) instead of (56) in (76), we obtain ; . e

X B - Lo kL, g5-1
© sy M U~ Che *k? n, '
- . \ .‘ \ <

"«

¥

o g

3

where we have suppressed practicglly everything but the de;ﬁendence on k = 2r/A. Thus

away from a caustic, we have n =2 and |Ul is mde\;pndent of wavelength (e.g., as in
to "trueg geometr.lcal optics." For the line caustlc of

n 3, a.ngsmce R = a(r') on the cauétic R=

-

v ”‘(86) and (87)); this correspon
the circul‘atr cylinder, we have

N

———eusp-(a*«%j.‘dr tie mrcle), we have n= 4, and U« (ka)7 More generally®since
AR W, Weseethat kZ 1 increases with mcreasmg n and approac'hes k? (at which
limit the'phase is "completely" statxonary) Thus U increasés on caustics as the
wavelengtﬁ A decreases the field is aLways finite since the case of zero wavelength

) AQmue,,s.engg_lnn (93)aid from dimenslonal consxderatxons tha; U= (ka)6 simxlarl&, for a
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9. Mathematical Model for Scatterlng

-
-

/'mprewous sectlons we considered certain aspects of wave theory but based the

development’on several supplementary "laws of nature." In the present section we tie

~

.t:?pecial postulates together into a mathematical model for scattering.

ve Egnation We considered the plane«waves wos(zkx - wt), and, for convenlence,

worked with the real part ‘of the corresponding exponentials:

o
(1) ; y e.tlkx fwt » etikx_ e-iwt = f(X)g(t) . :( . .
Equation (1) is a product of a function of x times a°function t, each of which satisfies
.~ * * ~

[y

- a second order differential equation: .

’ . d2f X )
‘(2) - N ) k2f(x) ,
§$‘
P : -
®) d—d%@ = —wtg(t) = -k2vig(t) , - BV = a2

As discussed previously, v is the phase velocity of the wave generated by a source
p : padont. :

vibrating at a frequency v, and A is the wavelén'%th-— the distance'bet\veen crests,
. X ! :
The general form of (2) and (3) is*. I P :
a . Q < . A
~ N P
@ LE0-. prg) = 0
-

9
“ @
.

whose general solution equals

(5) C cos By~+ C, sin By, or,_\equivalently, Dy By + D, eifr |

K
'where dhe first cons?afnts €y, éz) are lifiéar, combinations of the second (Dy, Dy). Thus
‘#in choosmg the particular combmatlons that led to (1), we used some selection rules.

We dlSCUSS these rules subsequently -
. - M o
Now 1et us use the doove to construct more general equatlons Qur attltude,:;} ,j‘

the following. We know of phenomena that can be described bmﬂncﬂeﬂs,a_uch ‘?

as (1). 4et us seek a general wave equatlon that yields (1) as well as more gqneral

wave Iorms The more general waves may well correspond to phenomena not covéred
L LT o .

L
| . 1

From (2) and {3), we have

w LR e 1 e g, -
ST ) gy Toovig(ty dt? ‘

° 3

Subtraot:ing one from the other, we obtain

S

S ’ 2
@)« 1 dig(®)

. /dzf(X) “ -
oo /<X el att

;

3 D

}f’°7

N,




i 3‘ \\ in (9). We write the general fonm as

’ or equivalently

. fgx) g ) d g( ) - h
) . £ ) , ,
e v:oodtt,
" where dd Qperates only on f(x), and gt' on g(t). The present notatxon is awkward

We would like to combine f(x)g(t) in a smgle form E(x, t) To do so and_px‘eserve the
idea that the d1fferent1atxons with respect to X and t are independent, we mtrodué’é/

" the notatmn — to represent dxfferentxatxon with respect to x whxle t is- fxxed - \"
. partial dlfferentxatxon, similarly for t. Thus, we rewrite (7) as
et
Ry 92 2
@) _E(a,_)m__mza,_) -282E<xt)-°
ax? v2 at* ax at
kY . ’
ﬁ z 1]
- Thxs is called the wave eguatxon The wave functxons of (1) are specxal‘solutxons of
. (8) corresponding to periodic waves. . .
g , ., .
‘\ We gene%‘ahze (8) to two spatial dimensions x,y by mtroducmg an additional
2N operatxon — into (8): ‘ -
( - . 3}’ — N - ¢ *
\ A Cfer 2. @ I
o\ L (9 = - 5 E&nt) = - I
ST ) o \ax ay2 v? at? o .
I S AN . . - -
’ "i ¢ . Theplane waves et!kxcosaslly sina-iutsyyat e considered in Section 8 are solutions2 of
\ A:u-—\ . (9). Similarly for three spatial dimensions we introduce an /additxonal operation %
SEENON, Z

— 1

L2

TR i 1 PEGY _
.’) 10 - - — = 0'
=~ L @9 <V% vt >

> where . z‘o j A
~ \’\ 'Y ” “ . bl N -
g . : « g2 ‘92 . 2
v (1 1) L Vz - _8_ + a_. + 8 3 . - ,
- 8x2  ay? o2 oy

(which is alvs.o frequently written as A) is called Laplace's ,pperator. s
- . o L. )
We maj alsorecast (11)in polar coordinates r, 6, ¢ . In particular, the elemen- _,

tary spherical wave that wé considered previously is the special solution of (10) that
depends only on the magmtude r but is independent of 8 and 90 Thg_sxmpler equatxon

for the elementary spherical wave - | - =
C e . E(e.b) = elkr~iwt -
- ( ) ‘ (r’ ) - T ﬁ
c% be obtained by comparxson with (1) and (8). Thus if werreplace E(x,t) by rE(r, t)
and -ﬁ- by 8—2- 'we obtain the corresp’ondmg equatxon for (12) 4+
- 7 ox T ~
5 : 52 2\ ' .
(18) £ 1L rE@Y =0. |
:'.” * ~ \/ 81‘ v at ) . "-v'
L . ﬁ 1

2
. e

o~
¥
[ i
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We may rewrite this .directly in the form of (10): ' - . -

v ’

i

- . 1 9 9E 1 3%E _ T *
(1) - rzar<rar>-;ztz oo

_ The general solution of (8) may be writtet *

1(15) : C B9 = Ftox) GEERY) e
. ,"'é% . b ‘ '\
where F and G are arbitrary tw1ce-=d;§,ferent1able functxgps Smnlarly, the general
solution of (13) is R T S
«16) rE(r,t) = F(vt - 1) + G(vt'+ r) ) -

The correspondlng solution for the equatlonef the line source in two dimensions and of

the general equation (10) cannot be expressed so simply. We mention the general

solutions only tp stress that the solutions corresponding to periodic waves are special
. I} ) . A . ’ . i s

cases.
4

Let us now i’gnore practically everything that led us to the wave equation '(lf)). We
. accept (10) as funda.mental and seek its periodic solutions, For completeness, we
repeat the deﬁnmong of the fundamental parameters given in previous sectaons

The t1me-per1od1c waves we aonsulered correspond to solutlons having the product

\
form * - » .

(a7 . ©EREY KDeo .

.

If we subst1tute (17) into (10), the "variables separate" in the sense that we abtain

v

. ’ 1. - gs !
w L KD VH(E) = ng(t) o ’

essentlally as in (6). Singe the left hand side of (18) is a fut(fcja)/n only of ¥, and the
right hand side only of t each side must equal the same constant call this consfant

k2. Thus (18) reduces to * - -« K '
. o '

(19) - . , iﬁég?\'*'»kfvzg@: =9,

ey - o Veﬁ(r)-—i-—klf(»r)v—-o : , '
v TR R . e :

where (20) is known as Hel‘ﬁholtz“sf'.e'qﬁatwn = STE e

Equat10n (19) is the form (4) V;e’considered previouslyd Its soiutions a?e the
, periodic fuctions’ 15 (5). Withiout ahy T&s's'dTé”e’xTe}“ﬁty, we pick N
(21) el e L”‘f&“?‘m”ﬁ' WS

to work with In equatlon (10)“ yms:gmxza:g:m‘é“ wi‘eloélty th§e distance an element of
the wave coVers 1n unit time From (21)_, we see t that git) is perlodic in t, i.e, 1f the

P
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- time t changes by multiples of the constant T= %‘I, then g is unaltered:

. gl = g +mT) ; T;%=%f n=1,2,3

‘"Thus T is the periodicity of the wave in- t1me and v (the frequency) is the number. of
P +=rtime§ 'Mat & has the same value in unit mterval of time. The analog in space the™

wavelength ' A .= vT = Zv, is the distance covered by an element movmg with velocity
v for atime T ‘But from (21), we have (-‘-:- = % Consequently k = T»»ls the rela—
* ; tion between the "separatlon constant" (the propagatlon factor or wave number) and
* wavelength. X . ~‘; PR ) )

The space equation (20) is known as the reduced wave equatlon orxHelmholtz's -

equation. The one dimensional case —df(}_{)- + k2f(x) = 0 is given in (2), and the spe-
x2

clal case of the spherlcally symmetrical waye is 1mp11c1t m (14), ie., :
(rf) *Rirf =0, f=f() . .

. «

The above equations specify propagation of waves in a medium \vhose propertles
, are determmed solely by v. For the periodic cases, once we fix the frequency facter

w, the corresponding wavelength in the medium 1s determined. If we are dealmg with
several such media spec1f1ed by different veloclt),es Vi 3 =0,1, ..., then we

obtain the same wave equatlons with v replaced by v,, ; the corresponding reduced ©
wave equations for frequency factor w 1nvolve kp = ;w_ = 7—2} To make full use of the
m m
earlier equations in v, we take v, =v = constant as a reference, and write - ’
’

, * v
2 . = =2 =
(23) Vm =

[

v -
l_l—"#(’:l’ 4 -

-

Wwhere pp, is the relative index of refractlon consequently 1‘:m
ing space equation for a medium speclfled by p , 18

- uy’ s
. 348
4 - . & TR,
.

= pumk. The go\r\r\spond-

24 - O+ 2HA(E) = 0 D
e.g., T ‘ < i g
-(25)« ) ;(-13-+2sz =0 f
, e M (x) L ) :
" for the one—dnnenswnal case, If p ‘is ihdependent of'x, then the solutions cf ‘(2'5)/" are
the forms (5) w1th B = k. < - ' . i
! Conditions on the Solutlon All the problems we con51dered are descrlbed by functlons
E(T)gt) = E(T)e™ut, where E(T) is a partlcular solution of the reduced wave equation . '
’ ‘ (1. (V2 + 2R)E(F) =0 , . - .
AL 1 .
[
T The particular solution s determined by constraints that have been 1mphc1t in our
B ; development. The constraints are of two kinds: \ N ' . .
-, : .
:; (ay. . restrlctlons on the solution at the Scatterer 8 surface, ' ! ,
5\ N S 2

[

[IIIJ:, restrlctlons on the solutlon at large dxstances from the scatterer

§ . .
P N . N 4 * * ¢ . ¢ 5 !
o i cnc sy - N . .

«
i

< AR




a.,'

[
A~ / v. N - ! 1 q : S
, J } 1 i
The ad'dltlonal constramts are nec Ssary hecause the wave equation n’ferely

describes the local perertles of the medium and how . a wave travels froni pomt to

N .

,Apomt But what if the medlum is dlscontmuous? e.g,

& { 1}.- . 'suppose we have a glass of water and conslder waves on the surface of_

" the water:. bounded by the unyielding rim of the glass; 1

{2}: . suppose we are in a,bhOat on a very large lake and the boat is an gbstacle

for an'incoming wave?
- ' v

Cases {1} and {2} illustrate two essentlally different kinds of wave problems we may
be coricerned with. ,J A

’
N E4

In {4’}"\<v mm a bounded medlum we are gwén v, the shape of the boundary
and constraints on the solutwﬁ at the boundary, and then may, seek to determine the
T =wforms and permds of the \aves that can be mamt 'ned%l :h enclosed medla These

v

are free V1bratlon problems the waves on a taut cl theshne, ;:he waves on the sur-

P

face of a glass of water, sound waves in a closed

;%m tha\leetrpmag'netlc waves

in a metal cavity, etc., are illu tra,tlons and analogous problems ex1sf m the quantum
theory of atomlc states . et

If the boundmg surface is one that ylgiyds then waves on the 1ns1de create waves

* on the boungding surface, and they may propagate m a region external to the surface.
We may also set up vibrations on a surface and use the surface as a source of waves
for the externaI medw.m e g.,a v1bratmg‘drum héad as a source of sound. All musi-
cal mstruments strmgs drums pipes are examples of "vibrator-radiator" systems
for sound We have swrtched from talking about light to talking about sound and water
‘waves; this 1s'partly fOr convenience, but also to stress the fact that as far as wave
physics goes there are analogous phenomena 1n all branches of science.)

.

In {2} we dealwith,a, bounded objéef that represe;xts an obstacle to a wave travel-
ing in an essentially unbolmded medium. We require condltions that tell us the shape
and size of the obstacle, whether its surface is penetrable by waves and if so, then.

’ what is the medium inside its surface’.‘ Such ,boundary conditions or transition condi-

tions specify the kind of discontinuity the obstacle represents in the imbedding
medium. Dependiné on the phenomena we seek to model, we may require boundary )

1

conditions such as

.
¢ ' t

(a] E =0 on surface R ‘ B - !
or . -
© o [IIb] an 0 on surface - P y .
\ where gE is the, rate of change of} E along the nortal at a point on the surface ' /_j
These conditions correspond to surfaces 1mpenetrable to waves. If the surfaée is
g 3 . 1 Pt ‘%ﬁ:,l 5,
51 EEE ’
351% ‘ .
- 1 4 ¢ " ~
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penetrable (part1ally transparent), then many phenomena correspond to the following. . )
the waves outside the scatterer's surface travel in medmm 1 and the wave functions d

satisfy (V2 + p2K%)E; = 0; within the scatterer they travel in medijim-2 and satisfy

i (Ve-+ “22 k)E, = 0; at the surface E; and ‘E, are related by the transition conditions
[Hc}] ?1-132, - A

. where A 1s asupplementary physical constant. Thus in general, the wave problems
we consider are specified by two physical constants (or "physical parameters") Bo/lhy

and A whose values must be assxgned at the start. T . ]

Havmg {1] and {I], we complete the mathematxcal statement of the scattering

problem by conditions at large distances from the sc_atterer [III}. These specify that
.we seek a solution consisting of essentially tw0 terms: one texm corresponds to the

incident field, e.g.,’a plane wave

4 .

. P . L
[ma] 0 4 . Ei = eﬂ“ Py . . . . .\t

“ \\‘ A ’ *
which is the space part of ell*14t the other term, say Es, corresponds to the outgoing
wave radxated by the obstacle in response to E,. In (6:40) for scattering by a

. tenuous sphere, we saw that the wave at large distances from the scatterer was the

product of a function of directions and the elementary outgoing wave 'of a point source,
fkr-fwt .

. %. Similarly, in (6:32) for scattering by a str1p, the wave at large distances

. elkr - Wt

was proportxonal to that of a-Hn¢ source . The t:orresponding wave surfaces
. are symmetrical, and, in addition, we saw in Seétﬁons 2 ahd 5 that the eikonals cor: - -

responding to geomefrical reflection from a semlcn"cle and hemxsphere although com-

—t,

. phc:ifed in shape in the v1cuuty of the obstacle, became more and more symmetrxcal

with increasing distance. Similarly for g planar scatterer (6:17), the wave e’(“"‘"“')

is symmetrical in |x|. Suppressing the time dependence'e““Jt , We summarxze all \
? ¥ >
such cases by the statement o .
X “ olkr - ] - - ’ -
{Oib] - Esw ~ 8m —— asr ~Yo, m= 1;2,3
: rlm-72

.where r is measured from some point in the scatterer, and where g (called the
scattering amplitude). is independent of r. Thus at iarge distances from the scatterer

-

.. {19~ =), E, reduges to‘the'eiementary symmetrical wave times a function of angles.
The condition (Illb] is a consequence of the weaker Sommerfeld radiation condition

s —

ler(”“"‘)/2 {8 Esm ikE,m} = 0, as r~=, aidof a‘stxll weaker condxtion that the

~

mtegral over a sphere of radius r of the absolute square of the function in braces

approach zero as r ~ . The condition for r ~ « insures that we deal with outward

" radiation, and that the scattef'er correspond.to a source of waves (mstead of smk of

;
o . , ) A -3

. ) , 136 142 - W
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.

waves, and also rules out free vibrations as in {1}). Collectively we write the total

field'ds’ ‘ : \

elh" , _ MY

= 4- .o = ikx . ~ —_——
[mm] . E . El Es ’ El € ’ Esm &m r(m'\l)/Z’

where i and s stand for incident and scattéred respectively.

Efuations (I], [II], and [III] ~~nstXute the rﬁathematical model for scattering. They -
replace all the. special pri'ncip.’ we considered previous:ly; they cover all the cases.
where the principles apply, and many additional ones as well T}téy 1ncorporate the
essential gross physics of the effects of an obstaéle on;,the radlatxon from a source
and the cumulative fruits of two thousan‘cL yeggs,,qi e tion in providing a framework
of well-posed problems with unique solutions. In sunimary, the wave equation [I] de-
scribes the local properties of the medja, thegs\q.rface Londitions [II] take account of
obstacles (interfaces, transition regioné): and‘ﬁ)e'ﬁopdxtions at layge distances [III]
specify that the field consists of 4 wave (E;) from a primary source perturbed by a ‘
wave (E;) outgoing from the obstacle. We can now seek analytically the redistribution
of the radiation of a s()urce arising from the presence of an obstacle. ¢

Point Scatterer As an elementary illustration let us consider the scattering of a

planeyvave e™ by a small sphere of radius a for the boundary tondition {iia}, E = 0

"at_r=a. For the generial case of a sphere of arb1trary radius a we'would work with

the compiete solution of [I] for 4 = T subject to {IIl;]. We would represent El and E,
in terms of angle-dependent functions and initially unknown constants, and 'ghen use
[IIa] to determme the constants, However the restriction a << A, or eqmvalently,

o | Y

simplifies the problem. From the geometry of Figure 9-1, the incident field, elkr

1.

1 * I e - . v ¢ ]

©os FIGURE 9-1 , : . o

[ K ‘ . .
Ce e { € L . \

e

. @7y . ] Ei(@ =1 .-

equals e“‘z cos ¢ at the surface of the Sphere usmg the restrxction (26), we have

7

ell@ &s¢ ~ 1, g0 that we may work with the approximation

!

Thus the exciting fieid éj:;the surface is 1n£1ependent of angles, and the corresﬁorfding '
scattered wave must Pe snmlarlx mdepFndent of angles: E (r) is a solution,of '
& (rE,) + KArE, = 0, and the only one satxsfymg [TIb] at large distances is

”

e




(28)
where C is a constant. At the surface of the‘scgtterer r = a, we have

and consequently,the total fieldat r = a is approxi'maxely .

“(29) E@) = Eif@) + Bo(a) = " -g- .

Applying the boundary condition E(a) = 0, we get
1
(39) . C=-a,

The scattered wave for r > a is‘thus

¢

@81) E, = -2e'.

This corresponds physically, for example, to scattering of underwater sound by 2

small air-bubble (an exceptlon to [R) of Section 7).

Slab Scatterer: As another example let us cons1de<c scattermg of 4 plane wave Dby a

partially transparent slab as 111 Flgure ‘9-2. The conditions on the problem are:

. / ) dz( 5 4
@2y ) -d—)-(z-*‘k E =0, ‘|x|>a; (

M
-

|x| <., a;

a 2
89) = - = hk 3
‘4 ] , B i ,

@4)

35) |
From (35), we write

¢

. (36) E, = g+eikx s

%

R

.
,
o . S

4

‘ FIGURE 9-2
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"From (33), we take the most general solution in the form

; ) N e -1k
(K¥)) E; = b, e +'b_e™ ¥, .

We thus have four constants (g + &_»b_, b_) to determine, and we do so by applying
the surface conditions (34). ) . C

At x = 1a, we get
(38) BRI efla + g gl 5 b+[e'”(‘ + b_elKa ¥
. a .
" (39) , k(e-ih - g_e’h>‘= Alg(b+e'"“ - b_e“‘“) :

sim@la.rly’, at x = +a, ° v
40y’  byetKa i petKa= (14g )ella
: /

@) . KA(i)+e’Ka - b_e"”(‘) = k(1 +g)ell

’Hﬁa we have four algebraic equations for the four uhknowns.

PO
-

Sol‘vihg these, and introducing the abbl‘eviati\qﬁ‘sv. '

42)
., we obtain

_ e'lzh (1 - eu}(a) _
“3) . ) Q 1 _QZeMKa -

@ g e1s Go@elEn

1- Q2 el“(.a

where Rand T are called the reflectlon and tranSmlssmn coefficients. The gorre-

Spondmg internal f1eld is .- vt N e .
%

- 5) i | E - Qe! (K42 [otkx+ Qetk@e-]
- Lo 1- Q?. dKa

Expandmg the denommators in (43) and (44) enables us to interpret the solution in

Yoy
-

terms of multiple reﬂectlons 1nsizde the slab. : )

If we are dealing with a single interface at x = 0 as in Figure 9-3, thenwe

-

’




obgin simply )
' (46) 5 )\ N E1 —_ elkx _‘Qe"ikx .
@y °‘ . ~ E; = (1 - Qe'kx .

The results 'and all the above ‘may ‘be generalized by inspection to an arbitrary
angle of incidence o as in Figure 9-4. Thus in equatiops (32) and (33) we may replace

2!

FIGURE 9-4
.- . ." —

k2 by k?cos?a and K2 by K2cos?pg ‘and.obtain the same final functions’in fdrms of
the new constants kcos @ and Kcosg, e.g., (46) beéomes

)
.

Y lkxcos&_v-!kx~a 1= 2 -1 1 = KAcosg
,(48) e Qe ¢ Q Zi L, z kcosa ' _
K ,and'(47) becomes .. K

FERN .
» - L4

49) @ Q')e—‘K" coo fg degme o
- AT
We may now multiply (48) and (49) by, the same factor el ’"f‘. _This converts

D)

4 L
» : . . .
) to SRRE P

'3’ Y
A

- i .

(50) El e!kx cos & + 1ky sincv-_ QT =1kx cosa & iky sirfx El(a)} Ql Ei (.n»_o[)Q

in the plane x=0, From @9, multiphcatxon by e”‘y sina give
. i
\ - 1Kx cbs B+ 1ky sine
(5)1) . o Q')’e xepss e
Iff_we require that ) ' s )
o 1 {
A52) - ksing = Ksing , © i.e.,

1

= e = e e

E—sin@,}'= p’éinﬂ ,

¥
then (51) equals® '

S

113 o ’ . .

w Ep = (1 Q')e’K*c“B+lkyainB ’@
i 3 " .
& ; g
N ' qﬂ.’*r 5
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which is a plane wave traveling at an angle. B KEqu‘atio'n (52), which we recognize as
"Sn_el]fs Law" [S], is thus an artifice for convez:fing the solution of a one-dimensional

problem to the corresponding two-dimensional solution; it insures that corresponding.
wave fronts match at the surface. < - ) \

Integral rep_rese’ntations: In Sections 6 and 8 we used Huygens' principle in ordeg to
repﬁesentithe total scattered field as the integral of "wavelets" arising from elemen-
tary sources distributed over a surface or throughout a volume. To round out the
‘ﬁrevious intuitive disc'yssiox{ we should indicate how such 'fo‘rms follow from'‘the
present mathematit':al model [I]\, [T], and [OI]. AI}f_\yg had' available a theorem of '
Gauss (which relates certain surface and yolume integral forms) we could prove that
scattering functions E, satisfying [I} and iIIIm] can be r'epnesented' in terms of ele-

+* .
mentary sources H as ! ‘
»

(64)  Eun(f) = sf[Hmocl? - BD%ED) - E()o,HalklE - 51)] ds(B) ', -

- N q *
where p is’a point on a surface S(3) ;;.s in Figur\e9- that encloses the scatterer but
excludes- the f)bservation pofnt T » and wher 9, = % is the outward normal d;riVa-
tive. The function E(5) = E,(p) + E, (), thk total field at 7, and its normal deriv-
ative, are weighting factors for the surface dlstributi n of elementary sour\ce\s
Hm(.lf'-‘ﬁl) and- 8,H,, which radiate from 5 to ¥. | N

1

.

o B FIGURE 9-5 : B
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,The elementary sources are essentiaﬁly those we worked with in earlier sections.
Thus, in'three-dimensions (i.e., if all three space dimensions are significant in the

problem), we require a point source t ' ’ : .
e i SR - . ] : : . : -
G5 Hy(R) =-ggm, R=IF-Bl=Vik-pi+g-n?+@-0F
and in one-dimension, a planar source X | .
’ * ' ) fn - , ! ~~
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In two-dimen*’ons, for argument kR->> 1, q?e required line source approximates
. 3

l N e".”r/{ - :‘ »
(57) OB~ S e, R VR G R
’ A
FJ < v N
which is the form We worked with Previously; the fact that (57) holds only for large

*

-

~valles of the argument accounts for the restriction kR >> 1 that we mentioned for the
strip and cylinder.problems. For small values of kR, the elementary linijy

Aok '

' behaves quite differently.

- ¢ .

o,
. R
(58) | HR) v kR, kB~ 00

Its ex%,ct re}presentatic:lls given By
J - .

CON R = LEORR) L

.

v

“Where Ho(l) (which is known as Harﬁce}'s function of the first kind of order Zero) is the
special solution of (éO) for two-dimensions corresponding to angle independent out-
going waves, i.e.; it{ plays the same role in two-dimensions as e_;f and Qe“‘"" play in
the other cases. If We specialize S(p) to the surfaéeyﬁ—tl}matterer itself, then we
can use such surface conditiods as (II] to obtain equations (integral equations) for the

unknown values of E,(3) and 0, E4(p); for simple sﬁrfac}es*, the procedure is analo-
f f p > .

gous eto that we fellowed for the slab.:

- Ve
-

Although wé will not prove (54), we willrshow how totobtain the approximate forms
we worked with in earlier sections. Thus if we specialize S(P) to the scatterer's
" surface.and use the boundary condition (IIb] that 3 E(P) = 0, we reduce {54) to

5(60) U Ey(F) = -JE(F)O HaklT - 5l)ds(h) |

2 ~

: R . . M
iIn particular, in two-dimensions and kit - pl >> 1, we'ise (57) in (60) toobtain
- 7, N a A ‘

F— . -
’ .

B X P S
E*;v#hich is of the }eﬁdiréd form T[IIIc]. ‘If ye knew the fi'e!d E(p) onthe scatt:erer's sur-
face, we could obfain the scattered field Es(T) by integration, If we do not know the
’ ) fie:’ld (and it is only for very simple shapes that E(E) is kn:pwn exaétly), then we may
_{j\ . seek heuristic physically motivated appr5x121_xétions. i/ :
¥

- . . .
}n particular if the scatterer is very big compared to wavelength, then it is

v Iplausible'to. approximate E(p) by elementary geometrical op%:ics considerations.‘
Following essentially Kirchhoff, one approximates the total fié],’d E('ﬁ) .on the "lit’ -
side" of the scitterer by twice the incident yalwe Ey, and b}f zéro on the. "dark side."
Thus if we substitute A i

‘v ’ " ‘ ( 1. u!“’%‘:l )

as(62) E(5) ® By(B) on lit side; - E(E}z 0, J dark side’
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into (61) we obtain the general case of the integrals we considered in Sections 6 and 8,
i.e,, for the strip with ds(p) =dng and the circular cylinder with ds(p) = ady.

From (54) we could also construct the volume integral of elementary scatterers
that we worked with prevmusly for the case of a partially transparent sphere First
we speclallze (54) to p on the scatterer and then use the transition condltlons [I1c)
to replace the external surface fields E(p) = E(k,p) and 9, E(p) by the correspond-
mg internal fields E(K,p) and AR EEK,D) where K - = ky is therinternal wave number.
We then use, the same thsjgrem of Gauss to éonvert the resulting surface integral to an‘
integral over the volume of the scatterer. In particular for constant g and A =1, B
we would obtain ’

v

(63) E, = k2-K?) [, @F - 5)E®K, 5V (F)

¢ - s .-

where V is the volume of the scatterer. If we add E, to both sides of (63) we obtain
an integral equation for E which can be solved for simple shapes. We will not prove

(63), but we will show how this rigorous result leads to the previous appro:ﬁmatlon

. L ]
(6:38). o
" For tenu})us scattérers in the Sense K? = k22 ~ k2, Rayleigh replaced the -
unknOWn internal-field E(p) in (68) by the incident wave: v, . )
64 EK.0)% By f,0) = e . .

. 4 ) .
If we substitute (64) into (63) and spelc\lalize to three-dimensions by using (55), we

¥
Iy N 1 X .
obtain o e .

. »~ 2 2_ ‘;-” .) . ) .
\(%51 . E, ~ E0 1)fe*_* e™*qv(5)

. 14
ks .

which is the more ccmplete version of the form we worked with previously/é (6:38)ff.
Equation (65;) gives directly the result that the flux (|E,!?) is inversely proportiqnal

,to ad for various scatterers whose length dimensions are small compared to A, and ) -
was used by Rayleigh prior to ['R] of Section 7. ¢ . )

o

’

It should be stressed that such approximations as (62) and (64) are adequate only .
for hmlte% ranges of the parameters. However,, within their limitations, they providea ¥
u,sefu,l and mstructwe explicit results for probléns that cahnot be solved rlg?rously
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In concluding this chapter, we should re1terate that we have covered merely a
selected sgquente of topics in wave physxcs The wave equations that we™'backed into"
are, in general genherated in physics programs by operatxng on first order differential.
equations that relate the physical observables regarded as basic within a particular
dxscxpl_xne, e.g., particle velocity and excess pressure in acoustics, electric and
magnetic intensities in oplics, radio, etc. The wave function E we have dealt‘with
represents ong of these dlﬁerent physical observables lor one “of its Cartesian com-
ponents), and may also stand for the probabxhty densxty function of quantum mechanics.
Similarly the media that we specified by an mdex of refraction 4 and inferface, condi- i
tions represent quite d1fferent concepts in different disciplines, and involve different
kinds of physical parameters jmplicit continuity requxrements on appropriate phys{
cally observable fxelds etc. We have discussed neither the physics implicit in the
above nor in the much more complex question of sources and the geperation of fields.
‘We began with let there be light, and followed a narrow thread of congepts.

Although we made "light" the theme for much of the development, we have not
covered an essential aspect that distinguishes wave models for light from the models
used for sound: light, and all electromagnetic waves .must also be characterized by
mlarlzatxon this requires in general that we deal with vectbr wave functmns with
amplitudes perpendicular to the direction of propagation instead of the scalar functlo#é
we have considered. Ho‘lveverv ouy dxscussion of light was in no sense meant to lge
comprehensive, and as stréssed in the introduction of this chapter, there are many
phenomena involving hght that are not descrxbed by a wave model at all. In'illustrat-
ing different apphcamons of calculus, we have used light as a vehxcle for an 1ntroduc- ‘
tion to wave physic3, not only because we have many visual experiences to draw on,
but because the adequacy of a wave model for such phehomepa 3 was far from oI:&ious
to the early 1nvest1gators (and not pa.rtxcularly obvious even to us.without some care-
ful observatlons) For water waves, the appropriateness of the matrhematical model .
‘would have been clear from the start and even for sound waves the 1ntu1t10n leads
relatlvely directly from the visible waves on strmged instruments and on drum heads
,to wavesdn air. Thus in discussmg light, we could introduce key top1cs leadmg to the *
development of the wave model essept!ally in their hxstoricaI order, and thereby indi-
cate the greater generahty of’the wave model as Well as the domatns of applicability

' of the ?arher dpecial "laws of nature" that are now exhibit d as consequences. How-
ever the initial reservationﬁ that "light" is nexther wave nor pa,rtxcle and that only
} certaln classes of phenomena 1nv01vmg light are adequate;ly described by a ane
" model s ould not he lost sight, of, Light is one of the most c0mplex characters in the )

’ |
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The prec edmg two chapters illustrate attempts at sy stematxc é.pgroaehes to apph-
catlons of r?athematxcs in scgence Chapter 2 con51ders simple equa}s{i\ns for growth

ntexts of natare,

it shows that phenomena and processes that occur in all the sciences :\a.r linked by one
e\s and follow

it through various sciences. Chapter 3 is qujte dlfferent there we follow science as a

and compet;txon that arise, again and again in superfxcxall} unrelated,
mathematical model. We select a narrow thread of mathematxcal method

thread We select a narrow sequence of physical cpncepts leading from geometrical
optxcs through wave physxcs and exhibit various methods of the calculus that further
the development.™

-

Thus our two chagﬁ&%mmat/beﬁatms and science are very different. They
supplement each other Lq,‘,@;l.xcatmg the ways that mathematics and science interact.
The first chapter follows g;'gmathematxcs thread, the second a science thread, and the
two together may guggest the crossing threads of a fabric. 0}{# two threads intersect
at Rayleigh's theory for the color of the sky: in Chapter 2, it is a special case of a
general attenuatior; proceso_s; in Chapter 3, a special case of a general scattering

T

process.

-
-~

The other thread
suggests that every science intersects all of the mathematics. Together they may

- * One thread suggests that mathematics jntefsects every science.

suggest thut the interactions of mathematics and science are profound indeed. These
age thea‘threads of the,fabric of our universe, the structure of our perception of nature.
Mathematics and science are the very warp and woof of the universe our intellect has

' ' 3
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